Abstract

We propose a controllable surface guiding scheme for cold polar molecules by using four charged wires embedded in the substrate and calculate the spatial distributions of the electrostatic field. We analyze the relationship between the maximum trapping electric field (including the efficient well depth) and the system parameters, and we study the straight and bent guiding efficiencies of cold polar molecules in the weak-field-seeking state by using a simple theoretical model and Monte Carlo simulation. We show that the proposed four-wire scheme can be used to realize the manipulation and control of cold polar molecules in our surface guide on a chip and form a variety of molecule optics elements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
    [CrossRef]
  2. A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
    [CrossRef]
  3. F. A. van Abeelen and B. J. Verhaar, “Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate,” Phys. Rev. Lett. 83, 1550-1553 (1999).
    [CrossRef]
  4. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
    [CrossRef]
  5. H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
    [CrossRef]
  6. J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
    [CrossRef]
  7. S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
    [CrossRef]
  8. H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: An experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
    [CrossRef]
  9. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
    [CrossRef]
  10. G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
    [CrossRef]
  11. A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
    [CrossRef]
  12. M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
    [CrossRef]
  13. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
    [CrossRef]
  14. W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 6th ed. (McGraw-Hill, 2001).
  15. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
    [CrossRef]

2008

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

2004

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

2003

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

2000

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: An experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef]

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

1999

F. A. van Abeelen and B. J. Verhaar, “Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate,” Phys. Rev. Lett. 83, 1550-1553 (1999).
[CrossRef]

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
[CrossRef]

1998

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

1997

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

1995

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

1992

G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
[CrossRef]

Anderson, D. Z.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Berden, G.

H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
[CrossRef]

Bethlem, H. L.

H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
[CrossRef]

Bochinski, J. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

Buck, J. A.

W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 6th ed. (McGraw-Hill, 2001).

Chapman, M.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Chen, H.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Cimmino, A.

G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
[CrossRef]

Constant, E.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Corkum, P. B.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Cornell, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Danilov, J.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

deCarvalho, R.

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Deng, L.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Donley, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Doyle, J. M.

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Ekstrom, C.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Ellert, C.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Ensher, J. R.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Eyler, E. E.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Friendrich, B.

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Gould, P. L.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Guillet, T.

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Hammond, T.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Hayt, W. H.

W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 6th ed. (McGraw-Hill, 2001).

Hijmans, T. W.

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

Hudson, E. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

Junglen, T.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Lewandowski, H. J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

Loesch, H. J.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: An experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef]

Meijer, G.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

Meijie, G.

H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
[CrossRef]

Mosk, P.

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

Nikolov, A. N.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Opat, G. I.

G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
[CrossRef]

Pinkse, P. W. H.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Pinksem, P. W. H.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Pritchard, D.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Rangwala, S. A.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rempe, G.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Renn, M. J.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Reynolds, M. W.

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

Rieger, T.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rubenstein, R.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Sakai, H.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Scheel, B.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: An experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef]

Schmiedmayer, J.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Stapelfeldt, H.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Stwalley, W. C.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Tarasevitch, A.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

van Abeelen, F. A.

F. A. van Abeelen and B. J. Verhaar, “Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate,” Phys. Rev. Lett. 83, 1550-1553 (1999).
[CrossRef]

Verhaar, B. J.

F. A. van Abeelen and B. J. Verhaar, “Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate,” Phys. Rev. Lett. 83, 1550-1553 (1999).
[CrossRef]

Walraven, J. T. M.

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

Wang, H.

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

Wark, S. J.

G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
[CrossRef]

Wehinger, S.

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Weinstein, J. D.

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Xia, Y.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Ye, J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

Yin, J.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Yin, Y.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Yip, R. W.

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Zozulya, A. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Appl. Phys. B

G. I. Opat, S. J. Wark, and A. Cimmino, “Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules,” Appl. Phys. B 54, 396-402 (1992).
[CrossRef]

Nature

J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friendrich, and J. M. Doyle, “Magnetic trapping of calcium monohydride molecules,” Nature 395, 148-150 (1998).
[CrossRef]

Phys. Rev. A

A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, P. B. Corkum, and H. Sakai, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinksem, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Phys. Rev. Lett.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: An experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

M. Chapman, C. Ekstrom, T. Hammond, R. Rubenstein, J. Schmiedmayer, S. Wehinger, and D. Pritchard, “Optics and interferometry with Na2 molecules,” Phys. Rev. Lett. 74, 4783-4786 (1995).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: Experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

H. L. Bethlem, G. Berden, and G. Meijie, “Decelerating neutral dipolar molecules,” Phys. Rev. Lett. 83, 1558-1561 (1999).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, “Phase space manipulation of cold free radical OH molecules,” Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef]

P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized hydrogen,” Phys. Rev. Lett. 82, 307-310 (1999).
[CrossRef]

A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, “Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation,” Phys. Rev. Lett. 84, 246-249 (2000).
[CrossRef]

F. A. van Abeelen and B. J. Verhaar, “Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate,” Phys. Rev. Lett. 83, 1550-1553 (1999).
[CrossRef]

Other

W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 6th ed. (McGraw-Hill, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of electrostatic surface guiding using an electrostatic field with a minimum produced by four charged wires embedded in the substrate. The radius of the cylindrical wire is r 0 , the space between the centers of two neighbor wires is 2 a , the voltage between wires 2 and 3 is U 1 , and the voltage between the wires 1 and 4 is U 2 . (b) Contours distribution of the electrostatic field for a = 2 mm , r 0 = 0.5 mm , U 1 = 10 kV and U 2 = 35 kV . Contours are drawn at an interval of 2 kV cm , and the first contour shows 2 kV cm .

Fig. 2
Fig. 2

Dependences of the trapping central position y 0 on (a) radius r 0 of the wire, (b) space 2 a between the centers of two wires, (c) guiding voltage U 1 between wires 2 and 3, and (d) bias voltage U 2 between wires 1 and 4.

Fig. 3
Fig. 3

Relationship between the distributions of the generated electrostatic field (including the trapping potential) and the half space a between the two wires. (a) Distributions of E ( x , y ) (at y = y 0 ) and (b) distributions of E ( x , y ) (at x = 0 ) for r 0 = 0.5 mm , U 1 = 6 kV , U 2 = 20 kV , and the different spaces a ( a = 1.0 , and 1.5, and 2.0 mm ).

Fig. 4
Fig. 4

Relationship between the distributions of the generated electrostatic field (including the trapping potential) and the guiding voltage U 1 . (a) Distributions of E ( x , y ) (at y = y 0 ) and (b) distribution of E ( x , y ) (at x = 0 ) for a = 1 mm , r 0 = 0.5 mm , U 2 = 20 kV , and the different trapping voltages U 1 (5.5, 6.0, and 6.5 kV ).

Fig. 5
Fig. 5

Dependences of the maximum effective trapping electric field E ( y ) max on (a) trapping voltage U 1 and (b) bias voltage U 2 for a = 1 mm , r 0 = 0.5 mm , U 2 = 20 kV , or U 1 = 6 kV .

Fig. 6
Fig. 6

Dependence of the straight guiding efficiency on the transverse temperature T t of incident molecular beam for a = 1.5 mm , r 0 = 0.5 mm , U 1 = 6 kV , U 2 = 20 kV , T l = 100 T t , and N = 10 3 molecules. The solid curve is the calculated result and the data points (solid squares) with an error bar are Monte Carlo simulated ones.

Fig. 7
Fig. 7

Transformation between curvilinear coordinates ( x , y , z ) and the initial coordinates ( x , y , z ) .

Fig. 8
Fig. 8

(a) Dependence of the bent guiding efficiency on (a) the transverse temperature T t ( m K ) of incident molecular beam, (b) bent radius R for a = 1.5 mm , r 0 = 0.5 mm , U 1 = 6 kV , U 2 = 20 kV , T t = 10 mK , T l = 100 T t , and N = 10 3 molecules. The solid curve is the calculated result, and the data points (solid squares) with an error bar are the Monte Carlo modulated ones.

Fig. 9
Fig. 9

Dependence of the bent guiding efficiency on the longitudinal temperature T l ( K ) of incident molecular beam for a = 1.5 mm , r 0 = 0.5 mm , U 1 = 6 kV , U 2 = 20 kV , T t = 10 mK , and N = 10 3 molecules. The solid curve is the calculated result, and the data points (solid squares) with an error bar are the Monte Carlo modulated ones.

Fig. 10
Fig. 10

Transverse velocity distribution of the output cold molecular beam after the bent guiding in the (a) x and (b) y directions. (c) Left inset is the comparison between the longitudinal velocity distributions of the molecular beam before and after the bent guiding. The parameters used for the simulation are a = 1.5 mm , r 0 = 0.5 mm , U 1 = 6 kV , U 2 = 20 kV , T t = 10 mK , T l = 100 T t , and N = 10 4 molecules. The right inset is the longitudinal velocity distribution of the output cold molecular beam after the bent guiding in the z direction. The data points (solid squares) with an error bar are the simulated results, and the solid curve is the fitted curve by a function of the longitudinal velocity distribution.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

E x 1 = φ 1 x
E y 1 = φ 1 y ,
E x 2 = φ 2 x
E y 2 = φ 2 y ,
φ 1 = τ 1 2 π ( ε 0 + ε r ) ( ln ( ( x + b 1 ) 2 + ( y + r ) 2 ( x b 1 ) 2 + ( y + r ) 2 ) ) ,
φ 2 = τ 2 2 π ( ε 0 + ε r ) ( ln ( ( x b 2 ) 2 + ( y + r ) 2 ( x + b 2 ) 2 + ( y + r ) 2 ) ) ,
b 1 = 4 a 2 + r 2 a ,
b 2 = 4 a 2 + r 2 + a 2 r 2 + 9 a 2 r 2 3 a ,
E x y = [ ( E x 1 + E x 2 ) 2 + ( E y 1 + E y 2 ) 2 ] 1 2 .
W Stark = μ E .
W Stark ( r ) = M Ω J ( J + 1 ) μ E ( r ) = 1 2 μ E ( r ) ,
f ( v x , v y , v z ) = ( M 2 π k B T ) 3 2 exp [ M 2 k B T ( v x 2 + v y 2 + v z 2 ) ] ,
J i = x 2 + y 2 r 0 2 = 1 V d x d y v z > 0 v z f ( v x , v y , v z ) d v x d v y d v z = ( π 2 ) 1 2 ( k B T M ) 1 2 r 0 2 V ,
J 0 ( a , r 0 , U 1 , U 2 ) = r r 0 1 V r d r d ϕ S , v Z > 0 v z f ( v r , v ϕ , v z ) d v r d v ϕ d v z ,
S = { r , v r , v ϕ : 1 2 M v r 2 + 1 2 M v ϕ 2 + U ( r ) < 1 2 M r 2 r 0 2 v ϕ 2 + U ( r 0 ) } ,
r = ρ r 0 , v r = u r ( 2 k B T t M ) 1 2 , v ϕ = u ϕ ( 2 k B T t M ) 1 2 ,
v z = u z ( 2 k B T l M ) 1 2 .
J 0 ( a , b , r 0 , U 1 , U 2 ) = r 0 2 V ( 2 k B T t M ) 1 2 0 1 ρ { S ( ρ ) exp [ ( u r 2 + u ϕ 2 ) ] d u r d u ϕ } d ρ ,
S ( ρ ) = { ρ , u r , u ϕ : u r 2 + k B T t ( 1 ρ 2 ) u ϕ 2 < U ( r 0 ) U ( r 0 ρ ) } .
η = 2 π 0 1 ρ { S ( ρ ) exp [ ( u r 2 + u ϕ 2 ) ] d u r d u ϕ } d ρ .
x = x
y = R [ 1 cos ( z R ) ] + y cos ( z R ) ,
z = ( R y ) sin ( z R ) .
e x = e x ,
e y = e y cos ( z R ) + e z sin ( z R ) ,
e z = e y sin ( z R ) + e z cos ( z R ) .
a = a x e x + [ a y + v z 2 R ( 1 y R ) ] e y + [ a z ( 1 y R ) 2 v y v z R ] e z ,
1 2 M v x 2 + 1 2 M v y 2 + M v z 2 R ( y + r 0 ) + U ( x , y , z ) U ( r 0 , z ) .
1 2 M v x 2 U ( r 0 , z ) ,
1 2 M v y 2 + M v z 2 R ( y + r 0 ) U ( r 0 , z ) .
η = 2 π 0 1 ρ { S ( ρ ) exp [ ( u r 2 + u ϕ 2 ) ] d u r d u ϕ 2 u z > 0 u z × exp [ u z 2 ] d u z } d ρ .
P ( v x , y ) = 1 α t × π × Exp [ v x , y 2 α t 2 ] ( v x , y < v max ) ,
P ( v z ) = 2 v z α l 2 × Exp [ v z 2 α l 2 ] ,

Metrics