Abstract

The influence of optical saturation on noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) signals from purely Doppler-broadened transitions is investigated experimentally. It is shown that the shape and the strength of the dispersion signal are virtually unaffected by optical saturation, whereas the strength of the absorption signal decreases as (1+G±1)12, where G±1 is the degree of saturation induced by the sideband of the frequency-modulated triplet, in agreement with theoretical predictions. This implies, first of all, that Doppler-broadened NICE-OHMS is affected less by optical saturation than other cavity-enhanced techniques but also that it exhibits nonlinearities in the power and pressure dependence for all detection phases except pure dispersion. A methodology for assessments of the degree of saturation and the saturation power of a transition from Doppler-broadened NICE-OHMS signals is given. The implications of optical saturation for practical trace species detection by Doppler-broadened NICE-OHMS are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998).
    [CrossRef]
  2. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” (accepted for publication in Appl. Phys. B).
  3. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996).
    [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
    [CrossRef]
  5. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
    [CrossRef]
  6. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999).
    [CrossRef]
  7. N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
    [CrossRef]
  8. J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
    [CrossRef]
  9. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
    [CrossRef]
  10. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
    [CrossRef]
  11. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--improved detectability,” Opt. Express 15, 10822-10831 (2007).
    [CrossRef]
  12. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
    [CrossRef]
  13. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer Verlag, 1996).
  14. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
    [CrossRef]
  15. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
    [CrossRef]
  16. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Science Books, 1986).
  18. K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).
  19. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: Theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  20. R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  21. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984).
    [CrossRef]
  22. L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).
  23. F. M. Schmidt, W. Ma, A. Foltynowicz, and O. Axner are preparing a paper to be called “Probing the free-spectral-range of a high finesse optical cavity with dual frequency modulation spectroscopy--application to trace species detection.”
  24. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
    [CrossRef]
  25. C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
    [CrossRef]
  26. M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
    [CrossRef]

2008 (2)

2007 (2)

2006 (2)

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

2004 (2)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

2002 (1)

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

1999 (3)

1998 (1)

1997 (2)

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

1996 (2)

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996).
[CrossRef]

1984 (1)

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1975 (1)

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

Auwera, J. Vander

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Axner, O.

Barbe, A.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Benner, D. C.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Birk, M.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Bloembergen, N.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Bood, J.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Borde, C. J.

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

Brown, L. R.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Brown, S. S.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Carleer, M. R.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Chackerian, C.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Chance, K.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Chebotayev, V. P.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Coudert, L. H.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Dana, V.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer Verlag, 1996).

Devi, V. M.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Dube, P.

Fei, R.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Flaud, J. M.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fox, R. W.

Gamache, R. R.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Gianfrani, L.

Goldman, A.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Hall, G. E.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Hall, J. L.

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: Theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996).
[CrossRef]

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Hall, J. L. H.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Haroche, S.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Hartmann, J. M.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Hollberg, L.

Hough, J.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hummer, D. G.

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

Ishibashi, C.

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Jacquemart, D.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Jacquinot, P.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Jucks, K. W.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Kowalski, F. V.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kunasz, C. V.

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

Letokhov, V. S.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Levenson, M. D.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Lock, T.

Ma, L. S.

Ma, W.

Magyar, J. A.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Maki, A. G.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Mandin, J. Y.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Massie, S. T.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

McIlroy, A.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Murtz, M.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

North, S. W.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Orphal, J.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Osborn, D. L.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Palm, P.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Perrin, A.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Ravishankara, A. R.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

Rinsland, C. P.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Rothman, L. S.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Sasada, H.

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Schmidt, F. M.

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--improved detectability,” Opt. Express 15, 10822-10831 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” (accepted for publication in Appl. Phys. B).

F. M. Schmidt, W. Ma, A. Foltynowicz, and O. Axner are preparing a paper to be called “Probing the free-spectral-range of a high finesse optical cavity with dual frequency modulation spectroscopy--application to trace species detection.”

Shimoda, K.

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simeckova, M.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

Smith, M. A. H.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Stark, H.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Tennyson, J.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Tolchenov, R. N.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Toth, R. A.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Urban, W.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

van Leeuwen, N. J.

Varanasi, P.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Wagner, G.

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

Wappelhorst, M. H.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Wilson, A. C.

Ye, J.

Zheng, X. S.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Appl. Phys. B (3)

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

R. W. P. Drever, J. L. H. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, “Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60THz(5μm),” Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

J. Chem. Phys. (2)

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

J. Opt. Soc. Am. B (7)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: Theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827-2829 (1984).
[CrossRef]

C. J. Borde, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturation absorption line shape: Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1975).
[CrossRef]

Spectrochim. Acta, Part A (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Other (6)

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” (accepted for publication in Appl. Phys. B).

A. E. Siegman, Lasers (University Science Books, 1986).

K. Shimoda, N. Bloembergen, V. P. Chebotayev, J. L. Hall, S. Haroche, P. Jacquinot, V. S. Letokhov, M. D. Levenson, and J. A. Magyar, High-Resolution Laser Spectroscopy (Springer-Verlag, 1976).

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer Verlag, 1996).

L. S. RothmanD. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” JQSRT 96(2), 139-204 (2005).

F. M. Schmidt, W. Ma, A. Foltynowicz, and O. Axner are preparing a paper to be called “Probing the free-spectral-range of a high finesse optical cavity with dual frequency modulation spectroscopy--application to trace species detection.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. EDFL: Erbium-doped fiber laser; EOM: Electro-optical modulator; pol.: Free space polarizer; λ 2 : Half-wave-plate; VA: Variable attenuator; PBS: Polarizing beam splitter cube; λ 4 : Quarter-wave-plate; OI: Optical isolator; PD: Photodetector; DBM: Double balanced mixer; Phase: Phase shifter; Gain: Separate gain stage; LP: Lowpass filter; BP: Bandpass filter; nodes ( ) : Power splitters–combiners. The dotted lines indicate the free-space laser beam path.

Fig. 2
Fig. 2

(a) Direct absorption signals from 10 μ Torr of C 2 H 2 for an intracavity power of 0.47 W , (b) the corresponding f m -NICE-OHMS absorption (curves 3 and 4) and dispersion (curves 5 and 6) signals. Curves 1, 3, and 5 show signals from 100 ppm of C 2 H 2 in 100 mTorr of N 2 , whereas curves 2, 4, and 6 represent 1000 ppm of C 2 H 2 in 10 mTorr of N 2 . The curves in (c) and (d) correspond to those in (a) and (b) but for an intracavity power of 3.8 W .

Fig. 3
Fig. 3

f m -NICE-OHMS experimental signals (solid circles) from C 2 H 2 and CO 2 with theoretical fits (solid curves). (a)–(c) absorption signals (for clarity only every 12th point is displayed), (d)–(f) dispersion signals (only every 8th point is displayed). Residuals of the fits are shown below each panel (note the different scales for absorption and dispersion residuals). (a) and (d) correspond to 100 ppm of C 2 H 2 in 100 mTorr of N 2 , measured with an intracavity power of 0.47 W ; (b) and (e) represent 1000 ppm of C 2 H 2 in 10 mTorr of N 2 , measured with an intracavity power of 3.8 W ; whereas (c) and (f) show the signals from 900 mTorr of pure CO 2 , with an intracavity power of 0.47 W .

Fig. 4
Fig. 4

Pressure dependence of the CO 2 absorption (open circles) and dispersion (solid squares) f m -NICE-OHMS signal strength for an intracavity power of 0.47 W . The curves represent linear fits. The ratio of the slopes of the linear fits is 1.02.

Fig. 5
Fig. 5

(a) Absorption (open circles) and dispersion (solid squares) f m -NICE-OHMS signal strength from 1000 ppm of C 2 H 2 in 10 mTorr of N 2 as a function of total intracavity power. (b) Individual markers: The ratio of absorption to dispersion f m -NICE-OHMS signal strengths as a function of total intracavity power at different intracavity pressures. Solid curves: Fits of Eq. (12) to the data. The labeling for each curve corresponds to the total intracavity pressure and the relative C 2 H 2 concentration, respectively.

Fig. 6
Fig. 6

C 2 H 2 saturation power as a function of intracavity pressure together with a fit of Eq. (18) (solid circles and solid curve, left scale) and degree of saturation of the sidebands, G ± 1 (open circles, right scale).

Fig. 7
Fig. 7

(a) Pressure dependence of the C 2 H 2 f m -NICE-OHMS signal strength at absorption (open markers) and dispersion (solid markers) phase, with a linear fit to dispersion data, at low intracavity power ( 0.47 W ) . (b) The same as (a) but for an intracavity power of 3.8 W . (c) The ratio of the absorption to dispersion f m -NICE-OHMS signal strength shown in (a) and (b) (solid markers), thus for intracavity powers of 0.47 and 3.8 W , respectively, as a function of total intracavity pressures together with fits of Eq. (12) (solid curves).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

S f m n o ( Δ ν , θ f m , G + ) = η f m 2 F π J 0 ( β ) J 1 ( β ) P 0 L S n A × { [ χ ̂ 1 abs ( Δ ν , G 1 ) χ ̂ 1 abs ( Δ ν , G 1 ) ] cos θ f m + [ χ ̂ 1 disp ( Δ ν , G 1 ) 2 χ ̂ 0 disp ( Δ ν , G 0 ) + χ ̂ 1 disp ( Δ ν , G 1 ) ] sin θ f m } ,
G j = I + I sat J j 2 ( β ) = G + J j 2 ( β ) ,
S = 2 π 2 ν 0 μ 2 3 ε 0 h c 2 g 1 Q ( T ) e E 1 k B T ( 1 e h ν 0 k B T ) ,
χ ̂ j abs ( x j , G j ) = χ 0 1 1 + G j χ ¯ j abs ( x j ) ,
χ ̂ j disp ( x j ) = χ 0 χ ¯ j disp ( x j ) ,
χ ¯ j abs ( x j ) = e x j 2 ,
χ ¯ j disp ( x j ) = 2 π e x j 2 0 x j e s 2 d s ,
x j = ( Δ ν + j ν m ) ln 2 δ ν D ,
δ ν D = ν 0 c 2 ln 2 k B T m ,
S abs f m n o ( Δ ν , G ± 1 ) = S f m n o ( Δ ν , θ f m = 0 , G ± 1 ) = S 0 f m n o 1 1 + G ± 1 [ χ ¯ 1 abs ( Δ ν ) χ ¯ 1 abs ( Δ ν ) ] ,
S disp f m n o ( Δ ν ) = S f m n o ( Δ ν , θ f m = π 2 ) = S 0 f m n o [ χ ¯ 1 disp ( Δ ν ) 2 χ ¯ 0 disp ( Δ ν ) + χ ¯ 1 disp ( Δ ν ) ] ,
R abs disp ( G ± 1 ) = S abs , 0 f m n o ( G ± 1 ) S 0 f m n o = 1 1 + G ± 1 .
I sat = 3 c ε 0 2 γ 1 γ 2 μ 2 γ 12 γ 1 + γ 2 ,
I sat = C s ( Γ t t + B p ) 2 ,
Γ t t = 1 8 w 2 k B T m .
G ± 1 = P c + P sat J 1 2 ( β ) ,
P c + = 0 2 π 0 I 0 + e 2 r 2 w 2 r d r d φ = I 0 + π w 2 2 ,
P sat = I sat π w 2 .
κ = P c + P in = 4 T in ( F 2 π ) 2 ,
F = 2 π T in + T out + L in + L out .
R = P r P in = ( L in + L out T in + T out ) 2 ( F 2 π ) 2 .
κ = P c + P in = F π ( 1 R ) .
T = P t P in = 4 T in T out ( F 2 π ) 2 .
P c + = P t F π ( 1 R ) T .

Metrics