Abstract

A type of surface-plasmon-polariton bandgap structure for generating a confined nanometric optical field with high intensity and very small sidelobes is simulated by using the finite-difference time-domain method. The numerical results show that the intensity enhancement of the confined field can reach 2 orders of magnitude, with a resolution (FWHM of the zero-order mode) of 0.33λ and the high-order modes (sidelobes) being effectively suppressed to no more than 15%. These properties ensure the confined field to be used as a near-field source. Detailed and systematic investigations of the enhancement and the localization versus the structure parameters are performed, and the physical mechanisms behind these phenomena are explained. Potential applications of the confined field in near-field detection and imaging are discussed through interactions with different types of nanospheres. The simulated results reveal that details with feature sizes down to 0.13λ can be resolved.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
    [CrossRef] [PubMed]
  3. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
    [CrossRef]
  4. K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004).
    [CrossRef]
  5. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006).
    [CrossRef]
  6. T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001).
    [CrossRef] [PubMed]
  7. T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
    [CrossRef] [PubMed]
  8. T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
    [CrossRef]
  9. T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).
  10. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  13. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  14. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  15. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
    [CrossRef]
  16. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  17. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  18. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005).
    [CrossRef]
  19. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
    [CrossRef]
  20. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
    [CrossRef]
  21. B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
    [CrossRef]
  22. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
    [CrossRef] [PubMed]
  23. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
    [CrossRef]
  24. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
    [CrossRef]
  25. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  26. I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107-4114 (2006).
    [CrossRef] [PubMed]
  27. B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006).
    [CrossRef]
  28. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
    [CrossRef] [PubMed]
  29. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
    [CrossRef] [PubMed]
  30. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  31. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, “A virtual optical probe based on localized surface plasmon polaritons,” Opt. Express 13, 7017-7027 (2005).
    [CrossRef] [PubMed]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  33. Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).
  34. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229-2233 (2007).
    [CrossRef] [PubMed]
  35. A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
    [CrossRef]
  36. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]
  37. M. Derouard, J. Hazart, G. Lerondel, R. Bachelot, P.-M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15, 4238-4246 (2007).
    [CrossRef] [PubMed]
  38. A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
    [CrossRef]
  39. O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
    [CrossRef]
  40. P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
    [CrossRef]
  41. S. Wang, “Analysis of probe-sample interaction in near-field optical image of dielectric structures,” Microsc. Microanal. 5, 290-295 (1999).
    [CrossRef] [PubMed]

2007 (6)

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229-2233 (2007).
[CrossRef] [PubMed]

M. Derouard, J. Hazart, G. Lerondel, R. Bachelot, P.-M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15, 4238-4246 (2007).
[CrossRef] [PubMed]

2006 (5)

I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107-4114 (2006).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006).
[CrossRef]

2005 (4)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, “A virtual optical probe based on localized surface plasmon polaritons,” Opt. Express 13, 7017-7027 (2005).
[CrossRef] [PubMed]

2004 (4)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

2003 (3)

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (3)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

2001 (3)

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

2000 (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

1999 (3)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
[CrossRef]

S. Wang, “Analysis of probe-sample interaction in near-field optical image of dielectric structures,” Microsc. Microanal. 5, 290-295 (1999).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1996 (2)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

1993 (1)

O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
[CrossRef]

1991 (2)

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

1984 (2)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Adam, P.-M.

Bachelot, R.

Baida, F. I.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Baipo, Y.

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Bozhevolnyi, S.

O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

I. P. Radko, T. Sondergaard, and S. I. Bozhevolnyi, “Adiabatic bends in surface plasmon polariton band gap structures,” Opt. Express 14, 4107-4114 (2006).
[CrossRef] [PubMed]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

Carminati, R.

P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
[CrossRef]

Chichester, R.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

Derouard, M.

Descrovi, E.

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Du, C.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

Gai, H.

Garcia-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Genet, C.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Greffet, J. J.

P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Guntherodt, H. J.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Hazart, J.

Herzig, H.-P.

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Hong, T.

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Keller, O.

O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
[CrossRef]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

Lambin, P.

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Lerondel, G.

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, D.

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Liao, Z.

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Lucas, A. A.

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

Luo, X.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Martin-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Mufei, X.

O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
[CrossRef]

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Paeder, V.

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
[CrossRef]

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

Radko, I. P.

Royer, P.

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Shi, H.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Sondergaard, T.

Stockman, M. I.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Sun, L.

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Tian, Q.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Vaccaro, L.

Valle, P. J.

P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
[CrossRef]

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Vigneron, J. P.

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, J.

H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46, 2229-2233 (2007).
[CrossRef] [PubMed]

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

Wang, S.

S. Wang, “Analysis of probe-sample interaction in near-field optical image of dielectric structures,” Microsc. Microanal. 5, 290-295 (1999).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Wong, H. L.

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006).
[CrossRef]

Yeh, J. H. J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Yuan, Y.

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[CrossRef]

B. Wang and G. P. Wang, “Confining light in two-dimensional slab photonic crystal waveguides with metal plates,” Appl. Phys. Lett. 88, 193128 (2006).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110-153113 (2006).
[CrossRef]

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452-3454 (2002).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327-4329 (2002).
[CrossRef]

J. Appl. Phys. (2)

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

P. J. Valle, J. J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy,” J. Appl. Phys. 86, 648-656 (1999).
[CrossRef]

J. Microsc. (2)

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273-278 (2001).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 90-96 (2005).
[CrossRef]

Microsc. Microanal. (1)

S. Wang, “Analysis of probe-sample interaction in near-field optical image of dielectric structures,” Microsc. Microanal. 5, 290-295 (1999).
[CrossRef] [PubMed]

Nano Lett. (2)

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341-2345 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145-3149 (2007).
[CrossRef] [PubMed]

Nat. Phys. (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120-123 (2006).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10-15 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. B (3)

A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Physica B (1)

A. Dereux, J. P. Vigneron, P. Lambin, and A. A. Lucas, “Theory of near-field optics with applications to SNOM and optical binding,” Physica B 175, 65-67 (1991).
[CrossRef]

Scanning (1)

T. Hong, J. Wang, L. Sun, and D. Li, “Numerical and experimental research on the near-field optical virtual probe,” Scanning 26, 57-62 (2004).

Sci. Sin., Ser. A (1)

Z. Liao, H. L. Wong, Y. Baipo, and Y. Yuan, “Transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063-1076 (1984).

Science (2)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Surf. Sci. (1)

O. Keller, X. Mufei, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(color online) Excitation of SPPs on the air–metal interface. R denotes the specular reflected light at θ SPP , and S indicates the reradiated light within the cone angle characterized by the critical angle θ c . The 2D bandgap structure consisting of periodical grooves with a = λ SPP 2 , a depth of 20 nm and a width of 0.25 a .

Fig. 2
Fig. 2

(a) (b) Simulated results of SPP resonance on smooth gold film with the thickness of 50 nm . (a) Enhancement of the H-field as a function of the angle of incidence with λ = 633 nm . (b) Reflectivity spectrum with θ = 43.6 ° . (c) Reflectivity spectrum of the bandgap structure.

Fig. 3
Fig. 3

(color online) (a) Schematic of the 2D cavity structure constructed on the surface of the golden film. The length of the cavity is described as L, and the two side grooves are described by the depth d and the width w. (b) (c) Calculation results of the structure with L = 1.5 a , w = 0.25 a , and d = 20 nm . (b) Distributions of the H-field in the y z plane. (c) FWHM of the zero-order mode (normalized to λ) and r versus z.

Fig. 4
Fig. 4

(a) Influence of the length of the cavity L on the normalized maximal intensity of the localized H-field and r. w = 0.25 a , d = 20 nm , and the distance in the z direction is 200 nm . (b) (c) (d) Influences of the depth and the width of the two side grooves (described as d and w, respectively). L = 1.5 a and the distance in the z direction is 200 nm . (b) Normalized maximal intensity and r versus d with w = 0.25 a . (c) Normalized maximal intensity and r versus w with d = 30 nm . (d) Reflected energy (sum of R and S) versus d and w.

Fig. 5
Fig. 5

(color online) Optimized results of the structure with L = 1.5 a , d = 30 nm , and w = 0.5 a . (a) Intensity distributions of the H-field in the y z plane. (b) r versus z.

Fig. 6
Fig. 6

(color online) (a) Illustrated model of the confined field applied in illuminating spheres in a near-field optical system. The geometrical parameters of the cavity structure are the same as in Fig. 5. The spheres are characterized by ϕ and ε s , and are placed at z away from the structure surface. (b) (c) Simulated results of scanning a sphere with ϕ = 80 nm and ε s = 2.3 at different distances of z = 100 , 150, 200, 250, and 300 nm . (b) Normalized specular reflected energy R during scanning. (c) Normalized reradiated energy S during scanning. (d) (e) Simulated results of scanning a glass sphere with ε s = 2.3 , a silicon sphere with ε s = 15 , and a golden sphere with ε s = ε ( ω ) at the distance of z = 150 nm . The diameters of all the spheres are equal to 80 nm . (d) Normalized specular reflected energy R during scanning. (e) Normalized reradiated energy S during scanning.

Fig. 7
Fig. 7

(color online) (a) Simulated results of scanning two identical spheres with ϕ = 80 nm and ε s = 2.3 at different spaces of s = 0 , 80, 160, 240, and 320 nm . The distance between spheres and the structure surface z is 150 nm . (b) Illustrated model of scanning three spheres with ε s = 2.3 spaced out 240 nm apart. The diameters of the first two spheres are ϕ 1 = ϕ 2 = 80 nm , and the third one is ϕ 3 = 112 nm . The distances from the structure surface are z 1 = z 3 = 150 nm and z 2 = 200 nm . (c) Simulated results of (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k SPP = ω c [ ε 0 ε ( ω ) ε 0 + ε ( ω ) ] 1 2 .
k = k 0 ε P sin θ SPP = Re { k SPP } ,
r = ( H m , max H 0 , max ) × 100 % ,
L = ( 2 n + 1 ) 2 a , n = 1 , 2 , 3 .

Metrics