Abstract

We discuss ultralow-power second-harmonic generation (SHG) frequency-resolved optical gating (FROG) in the telecommunication C-band using aperiodically poled lithium niobate (A-PPLN) waveguides as the nonlinear medium. A key theme of this work is that the phase-matching curve of the nonlinear medium is engineered to obtain an optical bandwidth adequate for measurement of subpicosecond pulses while retaining the optimum nonlinear efficiency consistent with this constraint. Our experiments demonstrate measurement sensitivity (defined as the minimum product of the peak and average pulse powers at which a reliable nonlinear signal can be detected) of 2.0×106mW2 in a collinear SHG FROG geometry, approximately 5 orders of magnitude better than previously reported for any FROG measurement modality. We also discuss asymmetric Y-junction A-PPLN waveguides that permit background-free SHG FROG and a polarization-insensitive SHG FROG technique that eliminates the impairment that frequency-independent random polarization fluctuations induce in the FROG measurement. Finally, we applied these SHG FROG techniques in chromatic dispersion and polarization mode dispersion compensation experiments. In these experiments the FROG data enabled complete correction of distortions incurred by subpicosecond pulses passing through optical fibers; these results also demonstrate the ability to retrieve extremely complex pulses with high accuracy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
    [Crossref] [PubMed]
  2. N. Belabas and M. Joffre, “Visible-infrared two-dimensional Fourier-transform spectroscopy,” Opt. Lett. 27, 2043-2045 (2002).
    [Crossref]
  3. A. M. Weiner, Z. Jiang, and D. E. Leaird, “Spectrally phase-coded O-CDMA,” J. Opt. Netw. 6, 728-755 (2007).
    [Crossref]
  4. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  5. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595-1608 (1994).
    [Crossref]
  6. T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet,” Opt. Lett. 20, 70-72 (1995).
    [Crossref] [PubMed]
  7. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997).
    [Crossref] [PubMed]
  8. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206-2215 (1994).
    [Crossref]
  9. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, “Amplitude and phase measurement of mid-infrared fs pulses by using cross-correlation frequency-resolved optical gating,” Opt. Lett. 25, 1478-1450 (2000).
    [Crossref]
  10. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
    [Crossref]
  11. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
    [Crossref]
  12. P. Baum and E. Riedle, “Design and calibration of zero-additional-phase SPIDER,” J. Opt. Soc. Am. B 22, 1875-1883 (2005).
    [Crossref]
  13. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326-328 (2005).
    [Crossref] [PubMed]
  14. A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, “Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction,” Opt. Lett. 31, 1914-1916 (2006).
    [Crossref] [PubMed]
  15. J. R. Birge, I. Ell, and F. X. Kartner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31, 2063-2065 (2006).
    [Crossref] [PubMed]
  16. B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
    [Crossref]
  17. M. Dinu and F. Ouochi, “Amplitude sensitivity limits of optical sampling for optical performance monitoring,” J. Opt. Netw. 1, 237-248 (2002).
  18. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultra-sensitive frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm,” Opt. Lett. 30, 2164-2166 (2005).
    [Crossref] [PubMed]
  19. H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.
  20. P.-A. Lacourt, J. M. Dudley, J.-M. Merolla, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Milliwatt-peak-power pulse characterization at 1.55 μm by wavelength-conversion frequency-resolved optical gating,” Opt. Lett. 27, 863-865 (2002).
    [Crossref]
  21. C. Langrock and M. M. Fejer, “Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in reverse-proton-exchange aperiodically poled lithium niobate waveguides,” Opt. Lett. 32, 2306-2308 (2007).
    [Crossref] [PubMed]
  22. H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
    [Crossref] [PubMed]
  23. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [Crossref]
  24. H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
    [Crossref] [PubMed]
  25. H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
    [Crossref] [PubMed]
  26. E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer-Verlag, 1977), pp. 85-88.
  27. A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. 19, 1276-1283 (1983).
    [Crossref]
  28. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932-934 (2001).
    [Crossref]
  29. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,” Opt. Express 7, 342-349 (2000).
    [Crossref] [PubMed]
  30. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [Crossref]
  31. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834-1836 (1997).
    [Crossref]
  32. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
    [Crossref] [PubMed]
  33. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420-1437 (2000).
    [Crossref]
  34. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304-318 (2000).
    [Crossref]
  35. A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett. 27, 1129-1131 (2002).
    [Crossref]
  36. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 μm,” Opt. Lett. 29, 2070-2072 (2004).
    [Crossref] [PubMed]
  37. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
    [Crossref]
  38. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
    [Crossref]
  39. V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).
  40. V. A. Ganshin and Y. N. Korkishko, “Some features of reverse ion exchange in H:LiNbO3 optical waveguides,” Sov. Phys. Tech. Phys. 35, 1095-1096 (1988).
  41. J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360-1361 (1991).
    [Crossref]
  42. J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468-2470 (1993).
    [Crossref]
  43. M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
    [Crossref]
  44. Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
    [Crossref]
  45. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838-1842 (1998).
    [Crossref]
  46. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794-796 (1996).
    [Crossref] [PubMed]
  47. R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
    [Crossref]
  48. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. Thesis (Stanford University, 2006).
  49. J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29, 551-553 (2004).
    [Crossref] [PubMed]
  50. X. Xie and M. M. Fejer, “Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions,” Opt. Lett. 31, 799-801 (2006).
    [Crossref] [PubMed]
  51. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
    [Crossref]
  52. S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt. 46, 6759-6769 (2007).
    [Crossref] [PubMed]
  53. H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.
  54. M. Akbulut, A. M. Weiner, P. Cronin, and P. J. Miller, “Broadband polarization correction with programmable liquid-crystal modulator arrays,” Opt. Lett. 29, 1129-1131 (2004).
    [Crossref] [PubMed]
  55. M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
    [Crossref] [PubMed]
  56. S. X. Wang and A. M. Weiner, “A complete spectral polarimeter design for lightwave communication systems,” J. Lightwave Technol. 24, 3982-3991 (2006).
    [Crossref]
  57. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103× magnification of femtoseconds waveforms,” Opt. Lett. 24, 783-785 (1999).
    [Crossref]

2007 (6)

2006 (5)

2005 (5)

2004 (4)

2003 (1)

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

2002 (4)

2001 (1)

2000 (5)

1999 (2)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[Crossref]

C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103× magnification of femtoseconds waveforms,” Opt. Lett. 24, 783-785 (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (2)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794-796 (1996).
[Crossref] [PubMed]

1995 (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet,” Opt. Lett. 20, 70-72 (1995).
[Crossref] [PubMed]

1994 (2)

1993 (1)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468-2470 (1993).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

1991 (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360-1361 (1991).
[Crossref]

1988 (2)

V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).

V. A. Ganshin and Y. N. Korkishko, “Some features of reverse ion exchange in H:LiNbO3 optical waveguides,” Sov. Phys. Tech. Phys. 35, 1095-1096 (1988).

1987 (1)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

1983 (1)

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[Crossref]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
[Crossref]

Akbulut, M.

Arbore, M. A.

Asobe, A.

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

Asobe, M.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

Barry, L. P.

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

Batchko, R. G.

Baum, P.

Bava, G. P.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

Beddard, T.

Belabas, N.

Bennett, C. V.

Birge, J. R.

Brown, C. T. A.

Byer, R. L.

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834-1836 (1997).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

Cabrera, J. M.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468-2470 (1993).
[Crossref]

Caccavale, F.

Chou, M. H.

Christov, I. P.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Clement, T. S.

Cronin, P.

DeLong, K. W.

Dinu, M.

Dorrer, C.

Dudley, J. M.

Ell, I.

Fedorov, V. A.

Fejer, M. M.

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

C. Langrock and M. M. Fejer, “Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in reverse-proton-exchange aperiodically poled lithium niobate waveguides,” Opt. Lett. 32, 2306-2308 (2007).
[Crossref] [PubMed]

S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt. 46, 6759-6769 (2007).
[Crossref] [PubMed]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[Crossref] [PubMed]

X. Xie and M. M. Fejer, “Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions,” Opt. Lett. 31, 799-801 (2006).
[Crossref] [PubMed]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultra-sensitive frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm,” Opt. Lett. 30, 2164-2166 (2005).
[Crossref] [PubMed]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 μm,” Opt. Lett. 29, 2070-2072 (2004).
[Crossref] [PubMed]

J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29, 551-553 (2004).
[Crossref] [PubMed]

A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett. 27, 1129-1131 (2002).
[Crossref]

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304-318 (2000).
[Crossref]

G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17, 1420-1437 (2000).
[Crossref]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834-1836 (1997).
[Crossref]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794-796 (1996).
[Crossref] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

Fermann, M.

Fittinghoff, D. N.

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997).
[Crossref] [PubMed]

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Galvanauskas, A.

Ganshin, V. A.

V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).

V. A. Ganshin and Y. N. Korkishko, “Some features of reverse ion exchange in H:LiNbO3 optical waveguides,” Sov. Phys. Tech. Phys. 35, 1095-1096 (1988).

Goedgebuer, J.-P.

Gonella, F.

Gu, X.

Harter, D.

Harvey, J. D.

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

Hepburn, J. W.

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

Huang, J.

Hum, D. S.

Hunter, J.

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[Crossref]

Imeshev, G.

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer-Verlag, 1977), pp. 85-88.

Jackel, J. L.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360-1361 (1991).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
[Crossref]

Jiang, Z.

Joffre, M.

Johnson, J. J.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360-1361 (1991).
[Crossref]

Jopson, R. M.

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

Kane, D. J.

Kapteyn, H. C.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Kartner, F. X.

Kasriel, S.

Kimmel, M.

Kogelnik, H.

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.

Kolner, B. H.

Konorov, S. O.

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

Korkishko, Y. N.

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838-1842 (1998).
[Crossref]

V. A. Ganshin and Y. N. Korkishko, “Some features of reverse ion exchange in H:LiNbO3 optical waveguides,” Sov. Phys. Tech. Phys. 35, 1095-1096 (1988).

V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).

Kosik, E. M.

Krumbugel, M. A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Kurz, J. R.

Lacourt, P.-A.

Langrock, C.

C. Langrock and M. M. Fejer, “Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in reverse-proton-exchange aperiodically poled lithium niobate waveguides,” Opt. Lett. 32, 2306-2308 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

Leaird, D. E.

Li, T.

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.

Loza-Alvarez, P.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

Merolla, J.-M.

Miao, H.

S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt. 46, 6759-6769 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

Miller, G. D.

Miller, P. J.

Milner, V.

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

Miyazawa, H.

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

Montrosset, I.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

Morozova, T. M.

Murnane, M. M.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.

Nishida, Y.

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

Olivares, J.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468-2470 (1993).
[Crossref]

O'Shea, P.

Ouochi, F.

Parameswaran, K.

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

Parameswaran, K. R.

Petrova, V. Z.

V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).

Porte, H.

Radunsky, A. S.

Reid, D. A.

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

Reid, D. T.

Rhodes, W. T.

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
[Crossref]

Riedle, E.

Roussev, R. V.

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[Crossref] [PubMed]

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. Thesis (Stanford University, 2006).

Rundquist, A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Saida, T.

Schober, A. M.

Segato, F.

Shank, C. V.

E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer-Verlag, 1977), pp. 85-88.

Sibbett, W.

Sohler, W.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

Steinmeyer, G.

Stibenz, G.

Suche, H.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

Suzuki, H.

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

Sweetser, J. N.

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997).
[Crossref] [PubMed]

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Tadanaga, O.

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

Taft, G.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

Taylor, A. J.

Thomsen, B. C.

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

Tian, J.

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

Trebino, R.

Tulloch, W. M.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
[Crossref]

Walmsley, I. A.

Wang, S. X.

Watts, R. T.

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

Weiner, A. M.

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

A. M. Weiner, Z. Jiang, and D. E. Leaird, “Spectrally phase-coded O-CDMA,” J. Opt. Netw. 6, 728-755 (2007).
[Crossref]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt. 46, 6759-6769 (2007).
[Crossref] [PubMed]

S. X. Wang and A. M. Weiner, “A complete spectral polarimeter design for lightwave communication systems,” J. Lightwave Technol. 24, 3982-3991 (2006).
[Crossref]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultra-sensitive frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm,” Opt. Lett. 30, 2164-2166 (2005).
[Crossref] [PubMed]

M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
[Crossref] [PubMed]

M. Akbulut, A. M. Weiner, P. Cronin, and P. J. Miller, “Broadband polarization correction with programmable liquid-crystal modulator arrays,” Opt. Lett. 29, 1129-1131 (2004).
[Crossref] [PubMed]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 μm,” Opt. Lett. 29, 2070-2072 (2004).
[Crossref] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
[Crossref]

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[Crossref]

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

Weise, D. R.

White, W. E.

Wyatt, A. S.

Xie, X.

X. Xie and M. M. Fejer, “Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions,” Opt. Lett. 31, 799-801 (2006).
[Crossref] [PubMed]

J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29, 551-553 (2004).
[Crossref] [PubMed]

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

Xie, X. P.

Xu, L.

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

Xu, X. G.

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

Yang, S.

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

Yang, S.-D.

Zhdanovich, S.

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1982).
[Crossref]

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468-2470 (1993).
[Crossref]

Electron. Lett. (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360-1361 (1991).
[Crossref]

IEEE J. Quantum Electron. (6)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42-51 (1987).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiments,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[Crossref]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[Crossref]

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. 19, 1276-1283 (1983).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Nishida, H. Miyazawa, A. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17, 1049-1051 (2005).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, “Characterization of 40-Gbits/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating,” IEEE Trans. Instrum. Meas. 53, 186-191 (2004).
[Crossref]

J. Chem. Phys. (1)

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, “Complete characterization of molecular vibration using frequency resolved gating,” J. Chem. Phys. 126, 091102 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Netw. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Opt. Express (1)

Opt. Lett. (23)

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834-1836 (1997).
[Crossref]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[Crossref] [PubMed]

A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett. 27, 1129-1131 (2002).
[Crossref]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 μm,” Opt. Lett. 29, 2070-2072 (2004).
[Crossref] [PubMed]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932-934 (2001).
[Crossref]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[Crossref] [PubMed]

P.-A. Lacourt, J. M. Dudley, J.-M. Merolla, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Milliwatt-peak-power pulse characterization at 1.55 μm by wavelength-conversion frequency-resolved optical gating,” Opt. Lett. 27, 863-865 (2002).
[Crossref]

C. Langrock and M. M. Fejer, “Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in reverse-proton-exchange aperiodically poled lithium niobate waveguides,” Opt. Lett. 32, 2306-2308 (2007).
[Crossref] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Polarization insensitive ultralow-power second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32, 874-876 (2007).
[Crossref] [PubMed]

D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, “Amplitude and phase measurement of mid-infrared fs pulses by using cross-correlation frequency-resolved optical gating,” Opt. Lett. 25, 1478-1450 (2000).
[Crossref]

T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet,” Opt. Lett. 20, 70-72 (1995).
[Crossref] [PubMed]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997).
[Crossref] [PubMed]

N. Belabas and M. Joffre, “Visible-infrared two-dimensional Fourier-transform spectroscopy,” Opt. Lett. 27, 2043-2045 (2002).
[Crossref]

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326-328 (2005).
[Crossref] [PubMed]

A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, “Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction,” Opt. Lett. 31, 1914-1916 (2006).
[Crossref] [PubMed]

J. R. Birge, I. Ell, and F. X. Kartner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31, 2063-2065 (2006).
[Crossref] [PubMed]

S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultra-sensitive frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm,” Opt. Lett. 30, 2164-2166 (2005).
[Crossref] [PubMed]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794-796 (1996).
[Crossref] [PubMed]

C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103× magnification of femtoseconds waveforms,” Opt. Lett. 24, 783-785 (1999).
[Crossref]

M. Akbulut, A. M. Weiner, P. Cronin, and P. J. Miller, “Broadband polarization correction with programmable liquid-crystal modulator arrays,” Opt. Lett. 29, 1129-1131 (2004).
[Crossref] [PubMed]

M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
[Crossref] [PubMed]

J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29, 551-553 (2004).
[Crossref] [PubMed]

X. Xie and M. M. Fejer, “Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions,” Opt. Lett. 31, 799-801 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
[Crossref]

Sov. Phys. Tech. Phys. (1)

V. A. Ganshin and Y. N. Korkishko, “Some features of reverse ion exchange in H:LiNbO3 optical waveguides,” Sov. Phys. Tech. Phys. 35, 1095-1096 (1988).

Zh. Tekh. Fiz. (1)

V. A. Ganshin, Y. N. Korkishko, and V. Z. Petrova, “Reverse ion exchange in H:LiNbO3 optical waveguides,” Zh. Tekh. Fiz. 58, 1168-1170 (1988).

Other (7)

R. V. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, “Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate,” in Lasers and Electro-Optics Society 2003. LEOS 2003. The 16th Annual Meeting of the IEEE (IEEE, 2003), Vol. 1, pp. 338-339.
[Crossref]

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. Thesis (Stanford University, 2006).

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion” in Optical Fiber Telecommunications IVB--Systems and Impairments, I.P.Kaminow and T. Li, ed. (Academic, 2002), p. 723.

H. Miao, L. Xu, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Broadband all-order polarization mode dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuN2.
[Crossref] [PubMed]

E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer-Verlag, 1977), pp. 85-88.

H. Miao, A. M. Weiner, S. Yang, C. Langrock, R. V. Roussev, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating using a fiber-pigtailed aperiodically poled lithium niobate waveguide at 1.55 μm,” in Ultrafast Phenomena XV (Springer, 2006), Part IV, pp. 157-159.

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Chirped QPM gratings allow tailoring of upconversion bandwidth, needed for accurate pulse measurements, while maintaining maximum efficiency consistent with the bandwidth requirement.

Fig. 2
Fig. 2

Experimental phase-matching curves of (a) PPLN and (b) apodized A-PPLN waveguides. Note the difference in scale of the abscissas in the two figures. The bandwidth of the A-PPLN is 100 times larger than that of the PPLN device.

Fig. 3
Fig. 3

Schematic of an asymmetric Y-junction device showing mode multiplexer at the input and demultiplexer at the output. Note that an odd SH spatial mode can be generated only through mixing an even and an odd FH mode, and so contains only SFG and not SH contributions.

Fig. 4
Fig. 4

Schematic diagram of SHG FROG using an A-PPLN waveguide. MI, Michelson interferometer; OSA, optical spectrum analyzer; I-CCD, intensified CCD camera.

Fig. 5
Fig. 5

FROG data of nearly bandwidth-limited pulses. (A) Measured and (B) retrieved FROG traces at 9.5 fJ . (C) Measured and (D) retrieved FROG traces at 124 aJ . Retrieved pulse illustrated in the (E) frequency domain and (F) time domain for both 9.5 fJ and 124 aJ coupled pulse energies. The dotted curve in (E) represents the independently measured power spectrum.

Fig. 6
Fig. 6

FROG data for bandwidth-limited optical pulses. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles together with the spectrum recorded by OSA (dotted). (D) Retrieved temporal intensity profile.

Fig. 7
Fig. 7

FROG data for optical pulses with cubic spectral phase. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles together with the spectrum recorded by OSA (dotted). (D) Retrieved temporal intensity profile.

Fig. 8
Fig. 8

Schematic of experimental setup used for autocorrelation and FROG measurements. Setup A contains a single-mode A-PPLN waveguide, while setup B contains a mode-multiplexing waveguide structure.

Fig. 9
Fig. 9

Interferometric (a) autocorrelation and (c) FROG trace obtained using setup A. Background-free collinear (b) autocorrelation and (d) FROG trace obtained using setup B.

Fig. 10
Fig. 10

Calculated (a) spectral and (b) temporal amplitude and phase information using a retrieval algorithm.

Fig. 11
Fig. 11

Scheme of polarization-insensitive FROG.

Fig. 12
Fig. 12

FROG data with time-varying polarization fluctuations intentionally introduced and scrambler off. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles together with the spectrum recorded by OSA (dotted). (D) Retrieved temporal intensity profile.

Fig. 13
Fig. 13

FROG data with time-varying polarization fluctuations intentionally introduced and scrambler on. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles together with the spectrum recorded by OSA (dotted). (D) Retrieved temporal intensity profile.

Fig. 14
Fig. 14

Experimental setup for pulse distortion corrections controlled via SHG FROG. In the high-order dispersion compensation experiment, the pulse distortion element is 50 km SMF; in the experiment of sensing and compensation of PMD-induced pulse distortion at selected polarization slices, the distortion element is a PMD emulator. PC, polarization controller.

Fig. 15
Fig. 15

FROG data of pulses distorted by high-order chromatic dispersion. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 16
Fig. 16

FROG data after dispersion compensation. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 17
Fig. 17

FROG data of chromatic dispersion and all-order PMD-distorted pulses at a selected polarization slice. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 18
Fig. 18

FROG data after spectral phase correction. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 19
Fig. 19

Temporal intensity profiles of the (A) distorted and (B) restored pulses.

Fig. 20
Fig. 20

Experimental setup for all-order PMD compensation.

Fig. 21
Fig. 21

Spectra (A) before and (B) after SOP correction. Solid, with PMD; dotted, without PMD.

Fig. 22
Fig. 22

FROG data of optical pulses after SOP correction. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 23
Fig. 23

FROG data of optical pulses after SOP and spectral phase correction. (A) Measured FROG trace. (B) Retrieved FROG trace. (C) Retrieved spectral intensity (solid) and phase (dashed) profiles. (D) Retrieved temporal intensity profile.

Fig. 24
Fig. 24

Pulses (A) before and (B) after spectral phase correction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I FROG ( Ω , τ ) d t E ( t ) E ( t τ ) e j Ω t 2 ,
I FROG ( Ω , τ ) H ( Ω ) 2 I FROG ( Ω , τ ) ,
G 2 ( τ ) d t E ( t ) E ( t τ ) 2 d Ω I FROG ( Ω , τ ) ,
G 2 ( τ ) d Ω I FROG ( Ω , τ ) ,
I FROG - Scrambled ( Ω , τ ) = 1 3 d t a ( t ) a ( t τ ) e j Ω t 2 .

Metrics