Abstract

We discuss the problem of measuring the intensity and phase of a broadband continuum in a single shot, considering three possible methods, and perform preliminary measurements using one of them. Our measurements use transient-grating cross-correlation frequency-resolved optical gating (TG XFROG) with a third-order nonlinear medium, which currently can phase match over 300nm simultaneously. We demonstrate this technique for a continuum generated in bulk fused silica that is 12.5mm thick. Due to limited reference-pulse energy, we do not achieve a true single-shot measurement, instead averaging over approximately five shots. The retrieved trace and spectrum contain fine structure, and the retrieved temporal phase is mainly quadratic.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
    [Crossref]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000).
    [Crossref]
  3. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, “Soliton transmission and supercontinuum generation in holey fiber using a diode pumped ytterbium fiber source,” Opt. Express 10, 382-387 (2002).
    [PubMed]
  4. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
    [Crossref]
  5. J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [Crossref]
  6. R.R.Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
  7. K. R. Wilson and V. V. Yakovlev, “Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system,” J. Opt. Soc. Am. B 14, 444-448 (1997).
    [Crossref]
  8. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174-1176 (2002).
    [Crossref]
  9. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
    [Crossref] [PubMed]
  10. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519-521 (1997).
    [Crossref] [PubMed]
  11. A. C. Eckbreth, “BOXCARS: crossed beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421-423 (1978).
    [Crossref]
  12. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23, 2317-2322 (2006).
    [Crossref]
  13. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002), Chapters 6, 7.
    [Crossref]
  14. D. Lee, S. Akturk, P. Gabolde, and R. Trebino, “Experimentally simple, extremely broadband transient-grating frequency-resolved-optical-gating arrangement,” Opt. Express 15, 760-766 (2007).
    [Crossref] [PubMed]
  15. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si (111) for autocorrelation measurements of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038-2040 (1993).
    [Crossref] [PubMed]
  16. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
    [Crossref]

2007 (1)

2006 (3)

2004 (1)

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
[Crossref]

2003 (1)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

2002 (2)

2000 (1)

1997 (2)

1993 (1)

1978 (1)

A. C. Eckbreth, “BOXCARS: crossed beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421-423 (1978).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[Crossref]

Akturk, S.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[Crossref]

Ashcom, J. B.

Belardi, W.

Bowlan, P.

Canto-Said, E. J.

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

Dudley, J.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

Dudley, J. M.

J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, “BOXCARS: crossed beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421-423 (1978).
[Crossref]

Fittinghoff, D. N.

Gabolde, P.

Gattass, R. R.

Gu, X.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174-1176 (2002).
[Crossref]

Jordan, C.

Kimmel, M.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174-1176 (2002).
[Crossref]

Krause, D.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
[Crossref]

Lee, D.

Malinowski, A.

Marowsky, G.

Mazur, E.

McGresham, K.

Monro, T. M.

O'Shea, P.

Piper, A.

Price, J. H. V.

Ranka, J. K.

Richardson, D. J.

Rogers, C. T.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
[Crossref]

Schaffer, C. B.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[Crossref]

Shreenath, A.

Shreenath, A. P.

Simon, P.

Stentz, A. J.

Sweetser, J. N.

Teplin, C. W.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
[Crossref]

Trebino, R.

Wilson, K. R.

Windeler, R. S.

Xu, L.

Yakovlev, V. V.

Zeek, E.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174-1176 (2002).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B: Lasers Opt. 77, 239-244 (2003).
[Crossref]

Appl. Phys. Lett. (1)

A. C. Eckbreth, “BOXCARS: crossed beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421-423 (1978).
[Crossref]

J. Appl. Phys. (1)

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626-3634 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584-587 (1970).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[Crossref]

Other (2)

R.R.Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002), Chapters 6, 7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of our TG XFROG measurement arrangement. The input beam is measured by a commercial SHG FROG (GRENOUILLE) and split into three beams. Two become pump beams, which eventually form the grating. The other beam generates a continuum from fused silica. The continuum is filtered by a BG 40 filter to yield only its blue component. The three beams are overlapped in time and crossed in space and time in the nonlinear medium. We use cylindrical mirrors in our experiment, instead of cylindrical lenses, for crossing and overlapping them in the nonlinear medium in order to minimize the continuum distortions. We use a lens in the figure because it is easier to draw and optically equivalent.

Fig. 2
Fig. 2

Spatial profile of the continuum from the bulk fused silica using an 5 μ J pulse energy. Slight color variations (intensity variations in gray scale) occurred in this beam, so only 3 μ J was used in order to minimize the spatial variations.

Fig. 3
Fig. 3

Schematic of three pulses [two pumps (black) and a continuum (gray)] for a single-shot TG XFROG geometry. The continuum and two pumps cross at an angle θ ( 13.5 deg ) , mapping delay onto the transverse position. The two pumps are overlapped in time and space and form a transient grating in the nonlinear medium. The continuum is diffracted by the transient grating.

Fig. 4
Fig. 4

Phase-matching condition for the TG XFROG. (a) k-vector diagram for TG FROG phase matching. k 1 and k 2 are the two pumps. k p is the probe beam to be measured. k FROG is the FROG signal. The signal beam emerges from the other corner of a rectangle of the three-input-beam geometry. The phase-matching condition is k FROG = k 1 k 2 + k 3 . (b) Bragg condition for the TG FROG, where ω 1 = ω 2 = ω p . (c) When ω 1 = ω 2 ω p , the Bragg condition is not satisfied, where Δ q is the phase mismatch. (d) Bragg condition for the blue side of the continuum and (e) Bragg condition for the red side of the continuum when we use the focused pump beams. As a result, when the beams are focused, the phase-matching bandwidth increases.

Fig. 5
Fig. 5

Measured (left) and retrieved (right) TG XFROG traces for the measurement of the continuum from a 12.5 mm bulk fused silica.

Fig. 6
Fig. 6

Left temporal intensity and phase measured using TG XFROG. Right, retrieved spectral intensity and phase of the continuum pulse measured using TG XFROG and the independent spectrum (averaged over many shots) for comparison.

Tables (1)

Tables Icon

Table 1 Brief Summary of the Sensitivities and Phase-Matching Bandwidths of the Various Single-Shot XFROG Beam Geometries a

Metrics