Abstract

We present a new scheme for coherent measurement of ultrashort optical pulses that relies on spectral shearing interferometry combined with all-optical time gating. The spectral phase is encoded along a temporal coordinate resulting in a two-dimensional (2D) self-referenced and self-calibrating set of data. The method works without time delay between the two interfering signals. The pulse amplitude and phase are reconstructed with a high signal-to-noise ratio using a direct algorithm that applies a Fourier transform (FT) to the 2D recorded interference pattern. Characterization of low-energy, high-repetition-rate femtosecond pulses of various shapes and validation of a single-shot operation are reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
    [CrossRef]
  2. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
    [CrossRef] [PubMed]
  3. E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
    [CrossRef]
  4. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  5. L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  7. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  8. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326-328 (2005).
    [CrossRef] [PubMed]
  9. J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31, 2063-2065 (2006).
    [CrossRef] [PubMed]
  10. V. Messager, F. Louradour, C. Froehly, and A. Barthelemy, “Coherent measurement of short laser pulses based on spectral interferometry resolved in time,” Opt. Lett. 28, 743-745 (2003).
    [CrossRef] [PubMed]
  11. M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
    [CrossRef]
  12. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
    [CrossRef]
  13. C. Dorrer and I. A. Walmsley, “Accuracy criterion for ultrashort pulse characterization techniques: application to spectral phase interferometry for direct electric field reconstruction,” J. Opt. Soc. Am. B 19, 1019-1029 (2002).
    [CrossRef]
  14. C. Dorrer and I. A. Walmsley, “Precision and consistency criteria in spectral phase interferometry for direct electric-field reconstruction,” J. Opt. Soc. Am. B 19, 1030-1038 (2002).
    [CrossRef]
  15. C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1983), Vol. 20, pp. 65-153.
    [CrossRef]
  16. K. Oba, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond single-shot correlation system: a time-domain approach,” Appl. Opt. 38, 3810-3817 (1999).
    [CrossRef]
  17. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74, S209-S217 (2002).
    [CrossRef]

2006

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31, 2063-2065 (2006).
[CrossRef] [PubMed]

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

2005

2004

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

2003

2002

1999

1998

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
[CrossRef]

1995

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Banares, L.

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

Barthelemy, A.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

V. Messager, F. Louradour, C. Froehly, and A. Barthelemy, “Coherent measurement of short laser pulses based on spectral interferometry resolved in time,” Opt. Lett. 28, 743-745 (2003).
[CrossRef] [PubMed]

Baumert, T.

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

Birge, J. R.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Cheriaux, G.

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1983), Vol. 20, pp. 65-153.
[CrossRef]

d'Humières, E.

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

Dorrer, C.

Ell, R.

Emplit, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

Fainman, Y.

Faure, J.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Fritzler, S.

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

Froehly, C.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

V. Messager, F. Louradour, C. Froehly, and A. Barthelemy, “Coherent measurement of short laser pulses based on spectral interferometry resolved in time,” Opt. Lett. 28, 743-745 (2003).
[CrossRef] [PubMed]

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1983), Vol. 20, pp. 65-153.
[CrossRef]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

Glinec, Y.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Haelterman, M.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

Hosokai, T.

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Iaconis, C.

Joffre, M.

Kärtner, F. X.

Kiefer, B.

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Kiselev, S.

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Kockaert, P.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

Kosik, E. M.

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326-328 (2005).
[CrossRef] [PubMed]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74, S209-S217 (2002).
[CrossRef]

Lefebvre, E.

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

Lelek, M.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

Lepetit, L.

Lifschitz, A.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

Louradour, F.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

V. Messager, F. Louradour, C. Froehly, and A. Barthelemy, “Coherent measurement of short laser pulses based on spectral interferometry resolved in time,” Opt. Lett. 28, 743-745 (2003).
[CrossRef] [PubMed]

Malka, V.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Mazurenko, Y. T.

Messager, V.

Norlin, A.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

Oba, K.

Pukhov, A.

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Radunsky, A. S.

Rechatin, C.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

Santos, J.

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Sun, P.-C.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1983), Vol. 20, pp. 65-153.
[CrossRef]

Walmsley, I. A.

Appl. Opt.

Appl. Phys. B

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74, S209-S217 (2002).
[CrossRef]

IEEE J. Quantum Electron.

P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Quantum Electron. 10, 206-212 (2004).
[CrossRef]

J. Appl. Phys.

E. Lefebvre, E. d'Humières, S. Fritzler, and V. Malka, “Numerical simulation of PET isotope production with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).
[CrossRef]

J. Chem. Phys.

L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, “The ultrafast photodissociation of Fe(CO)5 in the gas phase,” J. Chem. Phys. 108, 5799-5811 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Nature

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, “Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,” Nature 444, 737-739 (2006).
[CrossRef] [PubMed]

Opt. Commun.

M. Lelek, F. Louradour, A. Barthelemy, and C. Froehly, “Time resolved spectral interferometry for single shot femtosecond characterization,” Opt. Commun. 261, 124-129 (2006).
[CrossRef]

Opt. Lett.

Phys. Plasmas

J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, “Observation of laser pulse self-compression in nonlinear plasma waves,” Phys. Plasmas 13, 013103 (1998).
[CrossRef]

Science

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Other

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1983), Vol. 20, pp. 65-153.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

2D-SPIRIT experimental setup in the case of a high-repetition-rate pulse train characterization. SFG, sum-frequency generation.

Fig. 2
Fig. 2

Measurement of the spectral phase added by 12 cm of an F4 piece of glass. (a) 2D-SPIRIT interferograms, left, without glass; right, with glass. The time beat period that has been deduced from these recordings was equal to T = 1.25 ps . The corresponding infrared spectral shear was equal to Δ λ = λ 0 2 ( c T ) = 1.84 nm (i.e., Δ ω = 5.03 rad ps ). λ 0 = 830 nm . c denotes the light velocity in vaccum. (b) Gray solid curve, phase deduced from the Sellmeier relation; dotted curve, measured spectral phase; dashed–dotted curve, spectral amplitude.

Fig. 3
Fig. 3

(a)–(c) Pulse with a cubic spectral phase. (d)–(f) Pulse with a higher-order spectral phase. (a), (d) 2D-SPIRIT interferogram. (b), (e) Phases of the time beatings (solid black curve), reconstructed spectral phase (solid gray curve), and pulse spectral amplitude (dashed–dotted curve). (c), (f) Second-order autocorrelations deduced from 2D-SPIRIT (dashed curve) and a conventional second-order autocorrelator (MINI from APE) (solid curve), respectively.

Fig. 4
Fig. 4

Basic principle of the single-shot 2D-SPIRIT. Δ θ is the angular tilt that separates the two replicas of the pulse being measured. z is the propagation axis. x is the spectral axis. Δ ω stands for the frequency shear. T = 2 π Δ ω is the time period of the time-frequency beatings that take place at the spectrometer output. The time-frequency beatings are uniform along the vertical axis ( y ) .

Fig. 5
Fig. 5

(a) Single-shot 2D-SPIRIT experimental setup. Diffraction grating 2 (1440 grooves/mm) was in a Littrow configuration with its grooves parallel to the setup plane. It was tilted by 35 ° with respect to the vertical axis y. L2 and L1 were cylindrical lenses working in the setup plane. L3 was a cylindrical lens working in the plane that was orthogonal to the setup plane. (b) Examples of 2D-SPIRIT interferograms. (1) Case of a FT limited pulse and (2) case of a chirped pulse that was produced after variation of the compressor of the CPA system.

Fig. 6
Fig. 6

(a) Single-shot 2D-SPIRIT interferogram that was recorded at the output of the CPA system. (b) Measured time beat phases (gray curve) together with the spectral amplitude (black curve). A phase jump on the left part of the spectrum is clearly seen. This particularity coincides with a strong modulation of the spectral amplitude. (c) Deduced temporal intensity profile. The beat period T is close to 2 ps . It is much larger than the pulse duration ( 0.072 ps ) that serves as a time window. As a consequence, the contrast of the 2D interferogram is high.

Fig. 7
Fig. 7

Second-order dispersion amount imposed on the pulse as a function of the relative distance between the two diffraction gratings that composed the compressor of the CPA system. These data were deduced from single-shot 2D-SPIRIT measurements. The solid diagonal line represents the theoretical data that were deduced from the optogeometrical properties of the compressor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( ω , t ) ǀ E ( ω ) ǀ 2 [ 1 + cos ( Δ ω t + φ ( ω ) Δ ω ) ] ,

Metrics