Abstract

The inherent brevity of ultrashort laser pulses prevents a direct measurement of their electric field as a function of time; therefore different approaches based on autocorrelation have been used to characterize them. We present a discussion, guided by experimental studies, regarding accurate measurement, compression, and shaping of ultrashort laser pulses without autocorrelation or interferometry. Our approach based on phase shaping, multiphoton intrapulse interference phase scan, provides a direct measurement of the spectral phase. Illustrations of this method include new results demonstrating wavelength independence, compatibility with sub-5fs pulses, and a perfect match for experimental coherent control and biomedical imaging applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to 6 femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483-485 (1987).
    [CrossRef] [PubMed]
  2. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  3. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
    [CrossRef]
  4. K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
    [CrossRef]
  5. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses--frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101-1111 (1993).
    [CrossRef]
  6. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  7. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  8. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]
  9. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  10. P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
    [CrossRef]
  11. K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
    [CrossRef] [PubMed]
  12. H. X. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
    [CrossRef] [PubMed]
  13. M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).
  14. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  15. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
    [CrossRef]
  16. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  17. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  18. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  19. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16, 592-597 (2008).
    [CrossRef] [PubMed]
  20. V. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. PhysChem. 6, 1970-2000 (2005).
    [CrossRef]
  21. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan (MIIPS),” Appl. Opt. 46, 8394-8401 (2007).
    [CrossRef] [PubMed]
  22. A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B: Lasers Opt. 75, 427-443 (2002).
    [CrossRef]
  23. M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth--generation of few- to monocycle optical pulses,” IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
    [CrossRef]
  24. T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
    [CrossRef]
  25. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939-10944 (2006).
    [CrossRef] [PubMed]
  26. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
    [CrossRef] [PubMed]
  27. Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
    [CrossRef]
  28. M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  29. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5fs,” Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  30. Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spielmann, and F. Krausz, “Amplitude and chirp characterization of high-power laser pulses in the 5-fs regime,” Opt. Lett. 24, 247-249 (1999).
    [CrossRef]
  31. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504 (2008).
    [CrossRef] [PubMed]
  32. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, “Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,” Opt. Lett. 29, 2282-2284 (2004).
    [CrossRef] [PubMed]
  33. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
    [CrossRef]
  34. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
    [CrossRef]
  35. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37, 5679-5686 (1998).
    [CrossRef]
  36. A. H. Harvey, J. S. Gallagher, and J. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998).
    [CrossRef]
  37. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007).
    [CrossRef] [PubMed]
  38. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  39. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
    [CrossRef] [PubMed]
  40. V. V. Lozovoy and M. Dantus, “Laser control of physicochemical processes; experiments and applications,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 227-258 (2006).
    [CrossRef]
  41. J. P. Ogilvie, D. Debarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759-766 (2006).
    [CrossRef] [PubMed]
  42. B. von Vacano, T. Buckup, and M. Motzkus, “Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy,” J. Opt. Soc. Am. B 24, 1091-1100 (2007).
    [CrossRef]
  43. X. Zhu, T. C. Gunaratne, V. V. Lozovoy, and M. Dantus, “In-situ femtosecond laser pulse characterization and compression during micromachining,” Opt. Express 15, 16061-16066 (2007).
    [CrossRef] [PubMed]
  44. D. A. Harris, J. C. Shane, V. V. Lozovoy, and M. Dantus, “Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air,” Opt. Express 15, 1932-1938 (2007).
    [CrossRef] [PubMed]
  45. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
    [CrossRef]
  46. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15, 1615-1619 (1998).
    [CrossRef]
  47. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14, 8885-8889 (2006).
    [CrossRef] [PubMed]
  48. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef] [PubMed]
  49. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617-2626 (2005).
    [CrossRef] [PubMed]
  50. A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B: Lasers Opt. 90, 427-430 (2008).
    [CrossRef]
  51. J. H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
    [CrossRef]

2008 (4)

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16, 592-597 (2008).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504 (2008).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B: Lasers Opt. 90, 427-430 (2008).
[CrossRef]

2007 (6)

2006 (6)

2005 (4)

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617-2626 (2005).
[CrossRef] [PubMed]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. PhysChem. 6, 1970-2000 (2005).
[CrossRef]

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

2004 (4)

I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, “Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,” Opt. Lett. 29, 2282-2284 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

2003 (4)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).

K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

2002 (3)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B: Lasers Opt. 75, 427-443 (2002).
[CrossRef]

2001 (2)

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

J. H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

2000 (2)

1999 (3)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spielmann, and F. Krausz, “Amplitude and chirp characterization of high-power laser pulses in the 5-fs regime,” Opt. Lett. 24, 247-249 (1999).
[CrossRef]

1998 (4)

1997 (3)

1996 (1)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1993 (1)

1990 (1)

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

1987 (1)

Amat-Roldan, I.

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

Artigas, D.

Baltuska, A.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B: Lasers Opt. 75, 427-443 (2002).
[CrossRef]

Baum, P.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Beaurepaire, E.

Becker, P. C.

Binhammer, T.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Brabec, T.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Brixner, T.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Buckup, T.

Cheng, Z.

Chung, J. H.

J. H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

Clement, T. S.

Coello, Y.

Comstock, M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

Corkum, P.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Cormack, I. G.

Cruz, C. H. B.

Daimon, M.

Dantus, M.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504 (2008).
[CrossRef] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16, 592-597 (2008).
[CrossRef] [PubMed]

Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan (MIIPS),” Appl. Opt. 46, 8394-8401 (2007).
[CrossRef] [PubMed]

X. Zhu, T. C. Gunaratne, V. V. Lozovoy, and M. Dantus, “In-situ femtosecond laser pulse characterization and compression during micromachining,” Opt. Express 15, 16061-16066 (2007).
[CrossRef] [PubMed]

D. A. Harris, J. C. Shane, V. V. Lozovoy, and M. Dantus, “Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air,” Opt. Express 15, 1932-1938 (2007).
[CrossRef] [PubMed]

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14, 8885-8889 (2006).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “Laser control of physicochemical processes; experiments and applications,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 227-258 (2006).
[CrossRef]

B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939-10944 (2006).
[CrossRef] [PubMed]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. PhysChem. 6, 1970-2000 (2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Debarre, D.

Dela Cruz, J. M.

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

DeSilvestri, S.

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5fs,” Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Diddams, S. A.

Drescher, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Ell, R.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Fejer, M. M.

Ferencz, K.

Feurer, T.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B: Lasers Opt. 90, 427-430 (2008).
[CrossRef]

Fittinghoff, D. N.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Fork, R. L.

Furbach, A.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998).
[CrossRef]

Galler, A.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B: Lasers Opt. 90, 427-430 (2008).
[CrossRef]

Gallmann, L.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Gerber, G.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Gunaratne, T. C.

Gunn, J. M.

Harris, D. A.

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998).
[CrossRef]

Heinzmann, U.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
[CrossRef]

Joffre, M.

Kane, D. J.

Kannari, F.

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

Kartner, F. X.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Keller, U.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Kienberger, R.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Kobayashi, T.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B: Lasers Opt. 75, 427-443 (2002).
[CrossRef]

Krausz, F.

Langrock, C.

Laude, V.

Lenzner, M.

Li, H.

Lochbrunner, S.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Loza-Alvarez, P.

Lozovoy, V. V.

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504 (2008).
[CrossRef] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16, 592-597 (2008).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

X. Zhu, T. C. Gunaratne, V. V. Lozovoy, and M. Dantus, “In-situ femtosecond laser pulse characterization and compression during micromachining,” Opt. Express 15, 16061-16066 (2007).
[CrossRef] [PubMed]

D. A. Harris, J. C. Shane, V. V. Lozovoy, and M. Dantus, “Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air,” Opt. Express 15, 1932-1938 (2007).
[CrossRef] [PubMed]

Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan (MIIPS),” Appl. Opt. 46, 8394-8401 (2007).
[CrossRef] [PubMed]

B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939-10944 (2006).
[CrossRef] [PubMed]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Laser control of physicochemical processes; experiments and applications,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 227-258 (2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. PhysChem. 6, 1970-2000 (2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Martin, J. L.

Martin, R. M.

Masumura, A.

Meshulach, D.

Miao, H. X.

Midorikawa, K.

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

Millard, A. C.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Miller, T. L.

Milosevic, N.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Morgner, U.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Morita, R.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth--generation of few- to monocycle optical pulses,” IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

Motzkus, M.

Muller, M.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Nisoli, M.

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5fs,” Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Oehrlein, A.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

Ogilvie, J. P.

Oishi, Y.

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

Oka, K.

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Pastirk, I.

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14, 8885-8889 (2006).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Reider, G. A.

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

Riedle, E.

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Rittweger, E.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Roussev, R. V.

Sartania, S.

Sengers, J.

A. H. Harvey, J. S. Gallagher, and J. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998).
[CrossRef]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Shane, J. C.

Shank, C. V.

Silberberg, Y.

Solinas, X.

Spielmann, C.

Squier, J. A.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Steinmeyer, G.

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617-2626 (2005).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

Stibenz, G.

Strehle, M.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Strickler, J.

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Suda, A.

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

Suguro, A.

Svelto, O.

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5fs,” Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Szipocs, R.

Tournois, P.

Trebino, R.

Van Engen, A. G.

Verluise, F.

von Vacano, B.

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
[CrossRef]

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Webb, W.

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Weiner, A. M.

H. X. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[CrossRef] [PubMed]

J. H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

Wrzesinski, P. J.

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

Xu, B.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Yamane, K.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth--generation of few- to monocycle optical pulses,” IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

Yamashita, M.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth--generation of few- to monocycle optical pulses,” IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

Yelin, D.

Zhang, Z. G.

Zhu, X.

Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. (1)

V. V. Lozovoy and M. Dantus, “Laser control of physicochemical processes; experiments and applications,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 102, 227-258 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (5)

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B: Lasers Opt. 75, 427-443 (2002).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

P. Baum, S. Lochbrunner, L. Gallmann, G. Steinmeyer, U. Keller, and E. Riedle, “Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor,” Appl. Phys. B: Lasers Opt. 74, S219-S224 (2002).
[CrossRef]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B: Lasers Opt. 90, 427-430 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Chem. PhysChem. (1)

V. V. Lozovoy and M. Dantus, “Coherent control in femtochemistry,” Chem. PhysChem. 6, 1970-2000 (2005).
[CrossRef]

IEEE J. Quantum Electron. (4)

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, “Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective,” IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “General-method for ultrashort light-pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Yamashita, K. Yamane, and R. Morita, “Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth--generation of few- to monocycle optical pulses,” IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

J. H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (2)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: probing microscopic chemical environments,” J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998).
[CrossRef]

Nature (1)

M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001).
[CrossRef] [PubMed]

OE Mag. (1)

M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair: the femtosecond wheatstone bridge,” OE Mag. 9, 15-17 (2003).

Opt. Commun. (1)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses,” Opt. Commun. 281, 1841-1849 (2008).
[CrossRef]

Opt. Express (8)

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504 (2008).
[CrossRef] [PubMed]

B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939-10944 (2006).
[CrossRef] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16, 592-597 (2008).
[CrossRef] [PubMed]

X. Zhu, T. C. Gunaratne, V. V. Lozovoy, and M. Dantus, “In-situ femtosecond laser pulse characterization and compression during micromachining,” Opt. Express 15, 16061-16066 (2007).
[CrossRef] [PubMed]

D. A. Harris, J. C. Shane, V. V. Lozovoy, and M. Dantus, “Automated phase characterization and adaptive pulse compression using multiphoton intrapulse interference phase scan in air,” Opt. Express 15, 1932-1938 (2007).
[CrossRef] [PubMed]

J. P. Ogilvie, D. Debarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759-766 (2006).
[CrossRef] [PubMed]

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14, 8885-8889 (2006).
[CrossRef] [PubMed]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13, 2617-2626 (2005).
[CrossRef] [PubMed]

Opt. Lett. (10)

I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, “Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens,” Opt. Lett. 29, 2282-2284 (2004).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5fs,” Opt. Lett. 22, 522-524 (1997).
[CrossRef] [PubMed]

Z. Cheng, A. Furbach, S. Sartania, M. Lenzner, C. Spielmann, and F. Krausz, “Amplitude and chirp characterization of high-power laser pulses in the 5-fs regime,” Opt. Lett. 24, 247-249 (1999).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

K. Yamane, Z. G. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258-2260 (2003).
[CrossRef] [PubMed]

H. X. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, “Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states,” Opt. Lett. 32, 424-426 (2007).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575-577 (2000).
[CrossRef]

R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to 6 femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483-485 (1987).
[CrossRef] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

Y. Oishi, A. Suda, K. Midorikawa, and F. Kannari, “Sub-10fs, multimillijoule laser system,” Rev. Sci. Instrum. 76, 093114 (2005).
[CrossRef]

Science (1)

W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Pulse compression approaches. (a) Manual prism–grating compressor adjustment. (b) Optimization algorithm using the SHG signal as feedback. These two approaches do not require spectral phase measurements. (c) Measurement and correction using FROG or SPIDER as the characterization technique. (d) MIIPS. Measurement and correction are seamlessly integrated in a compact setup. NLO, nonlinear optical medium.

Fig. 2
Fig. 2

Principle of MIIPS. A set of reference functions f ( ω , p ) provides a reference grid that is used to map the unknown ϕ ( ω ) . (a) Conceptual diagram based on a horizontal reference grid (dashed lines) corresponding to different amounts of linear chirp. The solid curve represents the unknown ϕ ( ω ) . (b) MIIPS trace corresponding to a horizontal grid. (c) MIIPS trace corresponding to a sinusoidal grid. Note that in both cases the unknown ϕ ( ω ) is directly revealed by the contour plot.

Fig. 3
Fig. 3

MIIPS spectral phase correction of sub- 5 fs laser pulses. (a) Spectrum of the ultrabroad-bandwidth pulses compressed with MIIPS. The spectral phase was corrected within 0.1 rad accuracy across the whole bandwidth [top panel in (a)]. The time profile of the compressed pulses is shown in the inset. The FWHM is 4.3 fs . (b) Measured (solid curve) and Fourier transform calculated (dashed curve) SHG spectra of the pulses after compression. The response function of the crystal was not considered in the calculation.

Fig. 4
Fig. 4

MIIPS spectral phase measurement with a compressor. The chirp MIIPS trace for amplified laser pulses obtained using the built-in compressor in the regenerative amplifier is shown. The linear ϕ ( ω ) feature revealed by the trace corresponds to a cubic spectral phase distortion. The inset shows how linear chirp depends on the grating position for our compressor.

Fig. 5
Fig. 5

MIIPS compression of continuum generated in an Ar-filled hollow-core fiber. (a) Spectrum (dashed curve) and phase (solid curve) of the continuum together with the temporal profile (inset) before and after spectral phase correction. MIIPS and SHG-FROG traces of pulses (b) before and (c) after MIIPS compression are shown. These pulses were obtained by blocking part of the continuum spectrum shown in (a) at the Fourier plane of the pulse shaper (see text). The parallel features in the (c) MIIPS trace indicate TL pulses. The remaining subpulses in the (c) SHG-FROG trace are a result of the deeply modulated spectrum.

Fig. 6
Fig. 6

MIIPS characterization and compensation of spectral phase distortions introduced by an oil-immersion 60 × 1.45 NA objective. Spectral phase distortions (solid curve) remaining after prism-pair precompression in 100 nm bandwidth pulses (dotted line, spectrum) that have been focused with the objective. Note that the remaining phase is mainly cubic because precompression eliminates the quadratic but not the higher order phase terms. After MIIPS correction, the spectral phase is flat (dashed curve). The inset shows a comparison of two-photon excitation microscopy images of a kidney sample slide (a) when only the precompressor is used, and (b) when MIIPS phase compensation is applied. To allow for direct visual comparison of the images, the intensity of the precompressor-only image was enhanced by a factor of 2 ( 2 × ) . As a result of MIIPS correction of cubic and higher order phase terms, the average intensity of the image increased five times.

Fig. 7
Fig. 7

MIIPS accurate GVD measurements. (a) Comparison of k values for water obtained using MIIPS and white-light interferometry and calculated using the National Institute of Standards and Technology (NIST) [36] and Sellmeier formulas for the refractive index of water. While MIIPS measurements provide a continuous function for k , here we only plot values every 25 nm . The top panel shows the deviation of the corresponding values with respect to those calculated using the Sellmeier model. Note that for the MIIPS measurements, this deviation is not greater than 0.2 fs 2 mm . (b) k measurements of water, seawater, and seawater with three times the concentration of salt in seawater ( 3 × ) . The accuracy and precision of MIIPS allowed us to detect a linear increase in k as a function of the increasing concentration of sea salt.

Fig. 8
Fig. 8

MIIPS measurements through biological tissue. (a) Spectral phase measurement before (solid curve) and after (dashed curve) the pulses transmit through a 1 mm thick chicken breast tissue slice. The insets show the corresponding MIIPS traces. Note that even with the reduced signal to noise ratio caused by the presence of tissue, MIIPS is still able to characterize the spectral phase. (b) GDD introduced by a cow cornea-lens complex. The dashed zone in the inset shows the tissue used for the measurement. Aq. hum., aqueous humor; vit. hum., vitreous humor.

Fig. 9
Fig. 9

MIIPS measurements of complex spectral phases. Synthetic spectral phases introduced by the first pulse shaper (solid curves). Phases measured by the MIIPS box (crosses). The shaded area represents the spectrum of the pulses. The introduced phases in (a) and (b) are sinusoidal functions with periods 39 and 78 fs , respectively.

Fig. 10
Fig. 10

Experimental traces of TL pulses obtained with different MIIPS implementations. (a) SSHG-MIIPS. The signal is produced in the plasma generated during the ablation process in a surface. The traces shown were generated from a Si wafer. (b) Air-MIIPS. The signal is obtained from THG in air. (c) IR SD-MIIPS and (d) UV SD-MIIPS. The signal is obtained by SD in a thin plate of nonlinear medium. The inset shows the experimental setup. The dashed line represents the SD beam. In cases (a)–(c), the parallel and equidistant features indicate TL pulses.

Fig. 11
Fig. 11

Single-beam CARS spectra of toluene. (a) Unprocessed single-beam CARS spectrum of toluene. A large nonresonant background is present. (b) Unprocessed single-beam CARS spectra of toluene using specially designed pulses. For each spectrum, a binary phase designed to optimize individual excitation of vibrational modes was used. Selectivity and suppression of the nonresonant background were obtained. The spectra were obtained from a 12 m standoff distance.

Fig. 12
Fig. 12

Experimental traces obtained by different pulse shaper-based pulse characterization methods. (a) Spectrum and second derivative of the spectral phase of the pulses. (b) Chirp MIIPS, (c) sinusoidal MIIPS, (d) IFROG, and (e) IAC. The left and right columns correspond to a flat (TL) and a 1500 fs 3 cubic spectral phase, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ω ) = ϕ 0 + ϕ 1 ( ω ω 0 ) + 1 2 ϕ 2 ( ω ω 0 ) 2 + 1 6 ϕ 3 ( ω ω 0 ) 3 .
ϕ ( ω i ) = f ( ω i , p max ) .

Metrics