Abstract

A model for the description of laser-induced damage in bulk potassium dihydrogen phosphate (KDP) by nanosecond laser pulses is addressed. It is based on the heating of nanometric plasma balls whose absorption efficiency is described through the Mie theory. The plasma optical indices are then evaluated within the Drude model framework. This modeling provides an evaluation of the scaling law exponent x linking the damage threshold laser pulse energy density Fc to the pulse duration τ as Fc=ατx, where α is a constant. The inverse problem for which the knowledge of experimental data allows one to determine physical parameters of the model is considered. The results suggest that the critical plasma density is reached in a time much shorter than the pulse duration. Information about the nature of defects responsible for the damage initiation is also provided.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser,” Int. Mater. Rev. 47, 113-152 (2002).
    [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef] [PubMed]
  3. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
    [CrossRef] [PubMed]
  4. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
    [CrossRef]
  5. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
    [CrossRef]
  6. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
    [CrossRef]
  7. S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
    [CrossRef]
  8. R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023-4037 (1970).
    [CrossRef]
  9. T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
    [CrossRef]
  10. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  11. M. Sparks and C. J. Duthler, “Theory of infrared absorption and material failure in crystals containing inclusions,” J. Appl. Phys. 44, 3038-3045 (1973).
    [CrossRef]
  12. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  13. E. S. Bliss, “Pulse duration dependence of laser damage mechanism,” Optoelectron 3, 99-108 (1971).
  14. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).
    [CrossRef]
  15. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74-82 (2004).
    [CrossRef]
  16. A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt. 42, 5483-5495 (2003).
    [CrossRef] [PubMed]
  17. J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
    [CrossRef]
  18. J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
    [CrossRef]
  19. L. Gallais, P. Voarino, and C. Amra, “Optical measurement of size and complex index of laser-damage precursors: the inverse problem,” J. Opt. Soc. Am. B 21, 1073-1080 (2004).
    [CrossRef]
  20. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science, 1959).
  21. R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer, 2001).
  22. A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
    [CrossRef]
  23. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).
  24. The Stuart et al.'s criterion for avalanche domination is the following : E2σ>Uphγ, where E is the laser electric field, σ=e2τm/m(1+ω2τm2) is the ac electrical conductivity (where τm−1 is the transport momentum scattering rate), Uph is the characteristic phonon energy, and γ is the rate at which electron energy is transferred to the lattice. By setting the parameters to standard values, i.e., γ=τm−1=1014s−1 and Uph≃190meV, avalanche becomes effective for electric fields higher than ~5GV/m, i.e., intensities of 4TW/cm2. Since we are dealing with intensities of a few gigawatts per square centimeter avalanche is not the dominant electronic production mechanism in our conditions.
  25. P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
    [CrossRef]
  26. Let us evaluate the production of electrons in the conduction band by a two-photon absorption (TPA) with I=3.33GW/cm2, λ=351nm, Eg=7eV, and τp=100ps. By using the Keldysh formula we obtain an electronic density of roughly 1017cm−3. By using a characteristic generalized TPA cross section σ2=10−50cm4s and assuming an electronic density of the valence band close to 1023cm−3, the laser-induced electronic density in the conduction band is close to 3.4×1018cm−3. The two latter evaluations clearly show that the 1022cm−3 critical density cannot be reached by a pure TPA mechanism.
  27. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: plasma luminescence and shielding,” Appl. Opt. 27, 3661-3668 (1988).
    [CrossRef] [PubMed]
  28. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron. 35, 1156-1167 (1999).
    [CrossRef]
  29. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720-5728 (2002).
    [CrossRef]
  30. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).
    [CrossRef] [PubMed]
  31. H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).
  32. X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
    [CrossRef]
  33. R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2−xPO4 with respect to crystal growth parameters,” Opt. Lett. 31, 3110-3112 (2006).
    [CrossRef] [PubMed]
  34. M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
    [CrossRef]
  35. G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15, 4557-4576 (2007).
    [CrossRef] [PubMed]
  36. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).
  37. P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57-77 (1988).
    [CrossRef]

2007 (2)

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15, 4557-4576 (2007).
[CrossRef] [PubMed]

2006 (4)

R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2−xPO4 with respect to crystal growth parameters,” Opt. Lett. 31, 3110-3112 (2006).
[CrossRef] [PubMed]

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
[CrossRef]

2005 (2)

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

2004 (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74-82 (2004).
[CrossRef]

L. Gallais, P. Voarino, and C. Amra, “Optical measurement of size and complex index of laser-damage precursors: the inverse problem,” J. Opt. Soc. Am. B 21, 1073-1080 (2004).
[CrossRef]

2003 (2)

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt. 42, 5483-5495 (2003).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

2002 (2)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser,” Int. Mater. Rev. 47, 113-152 (2002).
[CrossRef]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720-5728 (2002).
[CrossRef]

2001 (2)

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
[CrossRef]

1999 (2)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron. 35, 1156-1167 (1999).
[CrossRef]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

1988 (2)

1981 (1)

T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
[CrossRef]

1980 (1)

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
[CrossRef]

1978 (1)

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

1973 (2)

M. Sparks and C. J. Duthler, “Theory of infrared absorption and material failure in crystals containing inclusions,” J. Appl. Phys. 44, 3038-3045 (1973).
[CrossRef]

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).
[CrossRef] [PubMed]

1971 (1)

E. S. Bliss, “Pulse duration dependence of laser damage mechanism,” Optoelectron 3, 99-108 (1971).

1970 (1)

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).

Adams, J. J.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Adhav, R. S.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Agostini, P.

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57-77 (1988).
[CrossRef]

Amra, C.

Bechtel, J. H.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Bercegol, H.

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

Bertussi, B.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Bliss, E. S.

E. S. Bliss, “Pulse duration dependence of laser damage mechanism,” Optoelectron 3, 99-108 (1971).

Bloembergen, N.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics,” Appl. Opt. 12, 661-664 (1973).
[CrossRef] [PubMed]

Bolourchi, M.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Bruere, J. R.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Burnham, A. K.

Capon, M. R. C.

Capoulade, J.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Carr, C. W.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science, 1959).

Damiani, D.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser,” Int. Mater. Rev. 47, 113-152 (2002).
[CrossRef]

S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
[CrossRef]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

DeMange, P.

Demos, S. G.

R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH2−xPO4 with respect to crystal growth parameters,” Opt. Lett. 31, 3110-3112 (2006).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
[CrossRef]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

Docchio, F.

Duchateau, G.

Duthler, C. J.

M. Sparks and C. J. Duthler, “Theory of infrared absorption and material failure in crystals containing inclusions,” J. Appl. Phys. 44, 3038-3045 (1973).
[CrossRef]

Dyan, A.

Feit, M. D.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74-82 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt. 42, 5483-5495 (2003).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).

Floyd, R. L.

Fu, Y.-J.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Gallais, L.

Gao, Z.-S.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Grua, P.

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

Guenther, A.

T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
[CrossRef]

Guenther, A. H.

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
[CrossRef]

Hackel, R. P.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Hahn, D. E.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Hawley-Fedder, R. A.

Hébert, D.

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Hopper, R. W.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

Hummel, R. E.

R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer, 2001).

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science, 1959).

Jarboe, J. A.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).

Kioussis, N.

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

Land, T. A.

Lane, L. A.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Li, Y.-P.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Liu, C. S.

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

Liu, P.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Lotem, H.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Luthi, R. L.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Mathis, H.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

McElroy, J. N.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Mellerio, J.

Morreeuw, J.-P.

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

Natoli, J. Y.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Negres, R. A.

Nielsen, P.

T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
[CrossRef]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron. 35, 1156-1167 (1999).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720-5728 (2002).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Petite, G.

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57-77 (1988).
[CrossRef]

Piombini, H.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Pommies, M.

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).

Radousky, H. B.

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
[CrossRef]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

Regondi, P.

Rubenchik, A. M.

J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
[CrossRef]

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74-82 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt. 42, 5483-5495 (2003).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Runkel, M.

Schmid, A. W.

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720-5728 (2002).
[CrossRef]

Sell, W. D.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Siekhaus, W. J.

Smith, L.

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Sparks, M.

M. Sparks and C. J. Duthler, “Theory of infrared absorption and material failure in crystals containing inclusions,” J. Appl. Phys. 44, 3038-3045 (1973).
[CrossRef]

Staggs, M.

S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26, 1975-1977 (2001).
[CrossRef]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

Stanley, J. R.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Sun, D.-L.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Sun, X.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).

Trenholme, J. B.

J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
[CrossRef]

Uhlmann, D. R.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

Vaidyanathan, A.

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
[CrossRef]

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).

Vickers, J. L.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Voarino, P.

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron. 35, 1156-1167 (1999).
[CrossRef]

Walker, T.

T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
[CrossRef]

Walker, T. W.

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
[CrossRef]

Wang, S.-L.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Wang, Z.-P.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Weiland, T. L.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser,” Int. Mater. Rev. 47, 113-152 (2002).
[CrossRef]

Willard, D. A.

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).
[CrossRef]

Xu, X.-G.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Yan, M.

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

Yu, X.-L.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Zaitseva, N. P.

Zeng, H.

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

Appl. Opt. (3)

Contemp. Phys. (1)

P. Agostini and G. Petite, “Photoelectric effect under strong irradiation,” Contemp. Phys. 29, 57-77 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients and energy density,” IEEE J. Quantum Electron. 35, 1156-1167 (1999).
[CrossRef]

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16, 89-93 (1980).
[CrossRef]

T. Walker, A. Guenther, and P. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings-part II: theory,” IEEE J. Quantum Electron. 17, 2053-2065 (1981).
[CrossRef]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser,” Int. Mater. Rev. 47, 113-152 (2002).
[CrossRef]

J. Appl. Phys. (4)

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, “Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation,” J. Appl. Phys. 85, 3988-3992 (1999).
[CrossRef]

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

M. Sparks and C. J. Duthler, “Theory of infrared absorption and material failure in crystals containing inclusions,” J. Appl. Phys. 44, 3038-3045 (1973).
[CrossRef]

S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720-5728 (2002).
[CrossRef]

J. Cryst. Growth (1)

X. Sun, X.-G. Xu, D.-L. Sun, Z.-P. Wang, S.-L. Wang, Y.-J. Fu, H. Zeng, Y.-P. Li, X.-L. Yu, and Z.-S. Gao, “Study on the liquid inclusion induced light scatter in KDP crystal,” J. Cryst. Growth 226, 529-533 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J. Y. Natoli, and H. Mathis, “Detection and characterization of absorption heterogeneities in KH2PO4 crystals,” Opt. Commun. 267, 154-161 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Optoelectron (1)

E. S. Bliss, “Pulse duration dependence of laser damage mechanism,” Optoelectron 3, 99-108 (1971).

Phys. Rev. B (3)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72, 134110 (2005).
[CrossRef]

P. Liu, L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266nm,” Phys. Rev. B 17, 4620-4632 (1978).
[CrossRef]

Phys. Rev. Lett. (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91, 015505 (2005).
[CrossRef]

Proc. SPIE (4)

J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2006).
[CrossRef]

J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 59910X (2006).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J.-P. Morreeuw, “Progress in the understanding of fracture related damage of fused silica,” Proc. SPIE 6720, 672003-1 (2007).

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74-82 (2004).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).

Other (7)

Let us evaluate the production of electrons in the conduction band by a two-photon absorption (TPA) with I=3.33GW/cm2, λ=351nm, Eg=7eV, and τp=100ps. By using the Keldysh formula we obtain an electronic density of roughly 1017cm−3. By using a characteristic generalized TPA cross section σ2=10−50cm4s and assuming an electronic density of the valence band close to 1023cm−3, the laser-induced electronic density in the conduction band is close to 3.4×1018cm−3. The two latter evaluations clearly show that the 1022cm−3 critical density cannot be reached by a pure TPA mechanism.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science, 1959).

R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer, 2001).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Fortran Numerical Recipes, 2nd ed. (Cambridge U. Press, 1999).

The Stuart et al.'s criterion for avalanche domination is the following : E2σ>Uphγ, where E is the laser electric field, σ=e2τm/m(1+ω2τm2) is the ac electrical conductivity (where τm−1 is the transport momentum scattering rate), Uph is the characteristic phonon energy, and γ is the rate at which electron energy is transferred to the lattice. By setting the parameters to standard values, i.e., γ=τm−1=1014s−1 and Uph≃190meV, avalanche becomes effective for electric fields higher than ~5GV/m, i.e., intensities of 4TW/cm2. Since we are dealing with intensities of a few gigawatts per square centimeter avalanche is not the dominant electronic production mechanism in our conditions.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).
[CrossRef]

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Couples of ( n , k ) values for which ω p = ω within the Drude model framework. Only the area under the curve has a physical meaning (see text). (b) Collisional time τ coll as a function of n in the case where ω p = ω .

Fig. 2
Fig. 2

(a) Critical fluence F c in J cm 2 as a function of n and k for τ = 3 ns . (b) Scaling law exponent x as a function of n and k for τ [ 1 , 10 ns ] . (c) Intersection of (a) and (b); the highlighted area delimits the region satisfying the experimental data.

Fig. 3
Fig. 3

(a) Critical radius, (b) Mie absorption efficiency, (c) critical fluence, and (d) scaling law exponent as a function of n for ω p = ω . Graphs (a)–(c) have been obtained for τ = 3 ns and (d) for τ [ 1 , 10 ns ] .

Fig. 4
Fig. 4

Scaling law exponent x as a function of n and k calculated for two pulse duration ranges; (a) [ 0.1 , 1 ns ] and (b) [ 10 , 11 ns ] .

Fig. 5
Fig. 5

Scaling law exponent x as a function of the pulse duration in the case where ω p = ω and n = 0.2 .

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

1 D T t = 1 r 2 r ( r 2 T r ) ,
[ 4 π 3 a 3 ρ p C p T t ] r = a = [ I 0 Q abs ( m , y ) π a 2 + 4 π a 2 λ t T r ] r = a ,
T ( a , τ ) = T 0 + Q abs I 0 4 D τ 4 λ t ξ ( U , A )
ξ ( U , A ) = U A 1 X 2 ( ϕ ( X A ) X 2 ϕ ( 1 X A ) ) ,
F c = 2 λ t ( T c T 0 ) Q abs ( a c ) D τ ξ ( U , A c ) ,
a c ( τ ) = 2 κ τ B ( U ) ,
ϵ = 1 ω p 2 ω ( ω i τ coll ) = ϵ 1 i ϵ 2 .
a c = 2 κ τ B ( U ) .
4 3 π a 3 ρ p C p T t = Q abs π a 2 I + 4 π a 2 λ b T r .
T < ( a , t ) = T 0 + Q abs I 4 λ b a ,
T > ( a , t ) = T 0 + 3 Q abs I 4 ρ p C p a t .
a c = 2 3 λ b 4 ρ p C p τ = 2 D eff τ ,
F c = 4 ( T c T 0 ) 3 λ b ρ p C p Q abs × τ 1 2 ,
T < ( a , t ) = T 0 + f ( n , k ) I 8 λ b a 2 ,
T > ( a , t ) = T 0 + 3 α I 4 ρ p C p a t .
a c = 6 α λ b f ( n , k ) ρ p C p 3 × τ 1 3 .
F c = 8 ( T c T 0 ) ( λ b f ( n , k ) ) 1 3 ( ρ p C p 6 α ) 2 3 × τ 1 3 .

Metrics