Abstract

We propose a powerful method to numerically solve the propagation of light in a photorefractive medium in the presence of both applied field and photogalvanic nonlinearity. This time-dependent full three-dimensional model is successfully applied to explain large self-bending of a solitonlike beam observed in biased undoped lithium niobate crystals. It reveals that charge saturation is at the origin of beam bending. The numerical results give deep insight of the formation dynamics in agreement with experiments and depict the trajectory of the induced waveguide inside the crystal.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
    [CrossRef]
  2. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199-299 (1982).
    [CrossRef]
  3. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
    [CrossRef]
  4. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
    [CrossRef] [PubMed]
  5. E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.
  6. M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997).
    [CrossRef]
  7. M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
    [CrossRef]
  8. M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
    [CrossRef] [PubMed]
  9. G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
    [CrossRef] [PubMed]
  10. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
    [CrossRef]
  11. P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
    [CrossRef] [PubMed]
  12. A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
    [CrossRef] [PubMed]
  13. B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997).
    [CrossRef]
  14. C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
    [CrossRef]
  15. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  16. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
    [CrossRef] [PubMed]
  17. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
    [CrossRef]
  18. M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
    [CrossRef]
  19. W. Yan, Y. Kong, L. Shi, L. Sun, H. Liu, X. N. Li, D. Zhao, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “Influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity,” Appl. Opt. 45, 2453-2458 (2006).
    [CrossRef] [PubMed]
  20. S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995).
    [CrossRef]
  21. M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706-718 (1996).
    [CrossRef]

2006 (1)

2005 (2)

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

2004 (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

2003 (1)

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

1999 (1)

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

1997 (3)

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997).
[CrossRef]

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

1996 (3)

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706-718 (1996).
[CrossRef]

1995 (2)

S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995).
[CrossRef]

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

1994 (1)

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

1993 (1)

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

1982 (2)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199-299 (1982).
[CrossRef]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
[CrossRef]

1981 (1)

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Anderson, D.

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Belic, M.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

Belic, M. R.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Buse, K.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

Chauvet, M.

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Chen, S.

Christodoulides, D. N.

S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995).
[CrossRef]

Coda, V.

Crosignani, B.

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997).
[CrossRef]

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.

Degasperis, A.

Del Re, E.

E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.

Denz, C.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Di Porto, P.

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997).
[CrossRef]

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Fazio, E.

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Feinberg, J.

Fressengeas, N.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Günter, P.

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199-299 (1982).
[CrossRef]

Huang, Z.

Huignard, J. P.

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Jander, P.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

Jovic, D.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

Kaiser, F.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Kong, Y.

Krätzig, E.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

Krlikowski, W.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Kugel, G.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Li, X. N.

Liu, H.

Liu, S.

Maillotte, H.

Marquez Aguilar, P. A.

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

Marrakchi, A.

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Maufoy, J.

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Petrovic, M.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

Petter, J.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Salamo, G.

Salamo, G. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Sanchez Mondragon, J. J.

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

Schröder, J.

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

Segev, G. M.

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Segev, M.

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14, 3078-3090 (1997).
[CrossRef]

M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706-718 (1996).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Shi, L.

Shih, M.

Shih, M. F.

M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Simon, M.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

Singh, S. R.

S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995).
[CrossRef]

Stepanov, S.

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

Stepken, A.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Strinic, A.

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

Sun, L.

Träger, D.

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

Trillo, S.

Tschudi, T.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Valley, G. C.

M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706-718 (1996).
[CrossRef]

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Vysloukh, V.

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

Weilnau, C.

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Wevering, S.

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

Xu, J.

Yan, W.

Yariv, A.

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Zhang, G.

Zhang, L.

Zhao, D.

Zozulya, A. A.

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D: Appl. Phys. 1, 144-149 (1997).
[CrossRef]

Opt. Commun. (2)

S. R. Singh and D. N. Christodoulides, “Evolution of spatial optical solitons in biased photorefractive media under steady state conditions,” Opt. Commun. 118, 569-576 (1995).
[CrossRef]

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249-254 (1981).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199-299 (1982).
[CrossRef]

Phys. Rev. A (2)

P. A. Marquez Aguilar, J. J. Sanchez Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54, R2563-R2566 (1996).
[CrossRef] [PubMed]

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (3)

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, and C. Denz, “Solitonic lattices in photorefractive crystals,” Phys. Rev. E 68, 055601 (2003).
[CrossRef]

C. Denz, W. Krlikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belić, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening solitons,” Phys. Rev. E 60, 6222-6225 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

M. Petrović, D. Jović, M. Belić, J. Schröder, P. Jander, and C. Denz, “Two dimensional counterpropagating spatial solitons in photorefractive crystals,” Phys. Rev. Lett. 95, 053901 (2005).
[CrossRef] [PubMed]

G. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

M. F. Shih and M. Segev, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

Other (2)

E. Del Re, B. Crosignani, and P. Di Porto, “Photorefractive Solitons,” in Spatial solitons, S.Trillo and W.Torruellas, eds. (Springer, 2001), pp. 61-85.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Early stage of the PR process. (a) Light distribution, (b) corresponding induced normalized charge density, and (c), (d) normalized electric field transverse components.

Fig. 2
Fig. 2

(a)–(d) Distribution at the exit face of the medium and cross section along the propagation direction of the normalized electric field component E ̃ y and (e)–(h) light intensity at four characteristic instants of the induction process.

Fig. 3
Fig. 3

(a) Normalized charge density and (b) index modulation along the propagation direction at an instant corresponding to Figs. 2c, 2g.

Fig. 4
Fig. 4

Beam evolution at the exit face of a 7 mm long LiNbO 3 sample. Experimental parameters: E 0 = 5 × 10 6 V m 1 , beam power 100 μ W . Images from (a) to (j) have been taken at times, respectively, equal to 0, 0.5, 2.1, 4, 4.6, 6.3, 9.6, 13, 16.3, and 19.5 h .

Fig. 5
Fig. 5

Time appearance of large bending as a function of inverse beam power. Experiment (squares); linear fit (line).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N D + t = s ( I + I d ) ( N D N D + ) γ N e N D + ,
{ [ ε ] E } = ρ ,
ρ = e ( N D + N A N e ) ,
J = e μ N e E + μ k B T N e + β ph ( N D N D + ) I c ,
ρ t = J ,
N ̃ e = ξ ( I + I d ) ( N ̃ D N ̃ D + ) N ̃ D + ,
N ̃ D + = 1 + ρ ̃ ,
ρ ̃ t = μ E 0 { [ N ̃ e ] E ̃ + N ̃ e E ̃ + k B T e E 0 Δ N ̃ e } μ ξ E ph [ ( N ̃ D N ̃ D + ) I ] c .
E ( r ) = 1 4 π [ ε ] ν ρ ( r ) r r r r 3 d V .
Δ n 1 2 n e 3 r 33 E y ,

Metrics