Abstract

We propose a novel scheme to realize atomic quantum motion, single-mode waveguiding, and coherence propagation by using a blue-detuned TE01 doughnut mode in a hollow metallic waveguide (HMW). In this scheme, ultracold atoms can not only be guided in the dark region of the TE01 mode in the HMW (which will suffer the minimal light shift and the lowest spontaneous emission loss), but also retain some advantages of dark hollow beam atomic guiding (which has a larger hollow radius and a higher vacuum). Our study shows that if the incident angle of the ultracold atoms of Bose–Einstein condensation (BEC) is very small and the deviation of the trapping frequency of the BEC from one of the HMWs is very small, the ultracold atoms may remain in the initial coherent state in the course of atomic coupling from the BEC to the HMW. The ground mode of the matter wave and the degree of first- (or second-) order coherence of guided ultracold atoms can be unchanged during propagation in the straight HMW and almost unchanged for several 10-cm propagation distances with a curvature radius 1.5m in the curved HMW.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
    [CrossRef] [PubMed]
  2. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
    [CrossRef] [PubMed]
  3. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
    [CrossRef]
  4. E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
    [CrossRef]
  5. S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
    [CrossRef]
  6. M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
    [CrossRef] [PubMed]
  7. W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997).
    [CrossRef]
  8. E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
    [CrossRef]
  9. M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
    [CrossRef]
  10. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
    [CrossRef] [PubMed]
  11. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
    [CrossRef] [PubMed]
  12. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
    [CrossRef] [PubMed]
  13. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
    [CrossRef] [PubMed]
  14. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
    [CrossRef]
  15. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
    [CrossRef]
  16. H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002).
    [CrossRef]
  17. E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000).
    [CrossRef]
  18. T. J. Davis, “Atomic de Broglie waveguides and integrated atom-optics using permanent magnets,” J. Opt. B 1, 408-414 (1999).
    [CrossRef]
  19. X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
    [CrossRef]
  20. S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
    [CrossRef] [PubMed]
  21. Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13, 8406-8423 (2005).
    [CrossRef] [PubMed]
  22. Y. Xia and J. Yin, “Generation of a focused hollow beam by an 2pi-phase plates and its applications in atom or molecule optics,” J. Opt. Soc. Am. B 22, 529-536 (2005).
    [CrossRef]
  23. J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1-116 (2006).
    [CrossRef]
  24. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  25. E. Garmire, T. McMahon, and M. Bass, “Propagation of infrared light inflexible hollow waveguide,” Appl. Opt. 15, 145-150 (1976).
    [CrossRef] [PubMed]
  26. R. L. Abrams and A. N. Chester, “Resonator theory for hollow waveguide lasers,” Appl. Opt. 13, 2117-2125 (1974).
    [CrossRef] [PubMed]
  27. M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277-282 (1993).
    [CrossRef]
  28. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
    [CrossRef]
  29. H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997).
    [CrossRef]
  30. M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999).
    [CrossRef]

2006 (1)

J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1-116 (2006).
[CrossRef]

2005 (3)

2002 (1)

H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002).
[CrossRef]

2001 (3)

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef] [PubMed]

S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
[CrossRef]

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

2000 (1)

E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000).
[CrossRef]

1999 (4)

T. J. Davis, “Atomic de Broglie waveguides and integrated atom-optics using permanent magnets,” J. Opt. B 1, 408-414 (1999).
[CrossRef]

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999).
[CrossRef]

1997 (7)

H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997).
[CrossRef]

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

1996 (2)

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

1995 (2)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

1994 (1)

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

1993 (2)

M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
[CrossRef]

M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277-282 (1993).
[CrossRef]

1976 (1)

1974 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Abrams, R. L.

Anderson, D. Z.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

Andrews, M. R.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

Band, Y. B.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Barnett, S. M.

S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
[CrossRef]

Barrett, M. D.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef] [PubMed]

Bass, M.

Burt, E. A.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

Chapman, M. S.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef] [PubMed]

Chester, A. N.

Cornell, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

Dai, M.

Davis, T. J.

T. J. Davis, “Atomic de Broglie waveguides and integrated atom-optics using permanent magnets,” J. Opt. B 1, 408-414 (1999).
[CrossRef]

Deng, L.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Doery, M.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Donley, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Durfee, D. S.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

Eberlein, C.

E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000).
[CrossRef]

Edwards, M.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

Franke-Arnold, S.

S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
[CrossRef]

Garmire, E.

Ghrist, R. W.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

Glauber, R. J.

M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999).
[CrossRef]

Gupta, S.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Hagley, E. W.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Helmerson, K.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Hinds, E. A.

E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Holland, M. J.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

Huang, H.

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

Huyet, G.

S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
[CrossRef]

Ito, H.

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Jhe, W.

H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002).
[CrossRef]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Julienne, P. S.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Ketterle, W.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997).
[CrossRef]

Kozuma, M.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Kurn, D. M.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

Lee, K.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Letkhov, V. S.

M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
[CrossRef]

Li, D.

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

Li, S.

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

Liu, X.

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Marksteiner, S.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

McMahon, T.

Miesner, H. J.

W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997).
[CrossRef]

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

Minogin, V. G.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

Miyagi, M.

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

Moore, K. L.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Murch, K. W.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Myatt, C. J.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Naraschewski, M.

M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999).
[CrossRef]

Nha, H.

H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

Noh, H. R.

H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002).
[CrossRef]

Ohtsu, M.

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Ol'Shanii, M. A.

M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
[CrossRef]

Ovchinnikov, Yu. B.

M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
[CrossRef]

Phillips, W. D.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Purdy, T. P.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Renn, M. J.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

Rolston, S. L.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

Saito, M.

Sakaki, K.

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Sato, S.

Sauer, J. A.

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef] [PubMed]

Savage, C. M.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Stamper-Kurn, D. M.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Townsend, C. G.

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

Trippenbach, M.

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

Wang, Y.

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

Wang, Z.

Wieman, C. E.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

Xia, Y.

Xu, X.

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

Yin, J.

Zoller, P.

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

Zozulya, A. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transition and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

J. Opt. B (2)

T. J. Davis, “Atomic de Broglie waveguides and integrated atom-optics using permanent magnets,” J. Opt. B 1, 408-414 (1999).
[CrossRef]

X. Liu, D. Li, H. Huang, S. Li, and Y. Wang, “Atom coherence propagation in a magnetic atomic waveguide,” J. Opt. B 3, 171-177 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

S. Franke-Arnold, G. Huyet, and S. M. Barnett, “Measuresof coherence for trapped matter waves,” J. Phys. B 34, 945-964 (2001).
[CrossRef]

Opt. Commun. (2)

M. A. Ol'Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77-79 (1993).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43-47 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rep. (2)

J. Yin, “Realization and research of optically-trapped quantum degenerate gases,” Phys. Rep. 430, 1-116 (2006).
[CrossRef]

H. R. Noh and W. Jhe, “Atom optics with hollow optical systems,” Phys. Rep. 372, 269-317 (2002).
[CrossRef]

Phys. Rev. A (8)

E. A. Hinds and C. Eberlein, “Quantum propagation of neutral atoms in a magnetic quadrupole,” Phys. Rev. A 61, 033614 (2000).
[CrossRef]

W. Ketterle and H. J. Miesner, “Coherence properties of Bose-Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291-3293 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50, 2680-2690 (1994).
[CrossRef] [PubMed]

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

H. Nha, and W. Jhe, “Sisphus cooling on the surface of a hollow-mirror atom trap,” Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

M. Naraschewski and R. J. Glauber, “Spatial coherence and density correlations of trapped Bose gases,” Phys. Rev. A 59, 4595-4607 (1999).
[CrossRef]

Phys. Rev. Lett. (7)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein Condensate,” Phys. Rev. Lett. 87, 010404 (2001).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Measurement of the coherence of a Bose-Einstein condensate,” Phys. Rev. Lett. 83, 3112-3115 (1999).
[CrossRef]

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337-340 (1997).
[CrossRef]

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[CrossRef] [PubMed]

Science (2)

M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensate in a dilute atomic vapor,” Science 269, 198-201 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of atomic guiding in the blue-detuned TE 01 mode. BDGB, and 2 π PP stand for blue-detuned Gaussian beam, and 2 π -phase plate.

Fig. 2
Fig. 2

Dependence of optical potential on the radial position r as a = 20 μ m and P in = 5 mW .

Fig. 3
Fig. 3

Dependence of the transition probability (a) on the incident angle θ with β 1 = β 2 and (b) on β 2 β 1 with θ = 0 ° .

Fig. 4
Fig. 4

Dependence of A 0 on the curvature radius R with different propagation distances l.

Fig. 5
Fig. 5

Dependence of g ( 1 ) on the propagating time t with different R as θ = 0 ° , ω 1 = ω 2 , v = 0.5 m s , a = 20 μ m , P in = 5 mW , and δ 2 π = 100 GHz .

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

E z = 0 ,
E r = 0 ,
E ϕ ( r ) J 1 ( u 01 r a ) ,
E FHB ( r ) = ( 4 k 1 P in π ) 1 2 r w 0 2 exp ( r 2 w 0 2 ) ,
A = 0 a E FHB ( r ) E ϕ ( r ) r d r 2 0 E FHB ( r ) 2 r d r 0 a E ϕ ( r ) 2 r d r .
I ( r ) = P J 1 2 ( u 01 r a ) 2 π 0 a J 1 2 ( u 01 r a ) r d r = A J 1 2 ( u 01 r a ) ,
A = P a 2 π J 0 ( μ 01 ) J 2 ( μ 01 ) .
U = Ω 2 4 δ ,
I ( r ) A u 01 r 2 2 4 a 2 .
U = 1 2 m ω 1 r 2 2 ,
ω 1 = ( A u 01 Γ 2 2 16 I sat a 2 m δ ) 1 2 .
i φ ( x , y , t ) t = [ 1 2 m ( x 2 + y 2 ) + U ] φ ( x , y , t ) .
Ψ ( t ) = i , j , μ c i , j N i , j H i ( β 1 x ) H j ( β 1 y ) exp ( β 1 r 2 2 2 ) exp ( i μ z ) exp ( i E i , j t ) ϕ ( 0 ) ,
U ( x , y , z ) = { 1 2 m ω 2 2 ( x 2 + y 2 ) z < 0 1 2 m ω 1 2 ( x 2 + y 2 ) + U 0 z > 0 .
C ( 0 , 0 ; 0 ) 2 = 4 β 1 2 β 2 2 ( β 1 2 + β 2 2 ) ( β 1 2 + β 2 2 cos 2 θ ) ,
C ( 0 , 2 ; 0 ) 2 = 2 β 1 2 β 2 2 ( β 1 2 β 2 2 cos 2 θ ) 2 ( β 1 2 + β 2 2 ) ( β 1 2 + β 2 2 cos 2 θ ) 3 ,
C ( 2 , 0 ; 0 ) 2 = 2 β 1 2 β 2 2 ( β 1 2 β 2 2 ) 2 ( β 1 2 + β 2 2 ) 3 ( β 1 2 + β 2 2 cos 2 θ ) .
A 2 = C ( 0 , 2 ; 0 ) 2 + C ( 2 , 0 ; 0 ) 2 .
C ( 2 , 2 ; 0 ) 2 = β 1 2 β 2 2 ( β 1 2 β 2 2 ) 2 ( β 1 2 β 2 2 cos 2 θ ) 2 ( β 1 2 + β 2 2 ) 3 ( β 1 2 + β 2 2 cos 2 θ ) 3 ,
C ( 0 , 4 ; 0 ) 2 = 3 β 1 2 β 2 2 ( β 1 2 β 2 2 cos 2 θ ) 4 2 ( β 1 2 + β 2 2 ) ( β 1 2 + β 2 2 cos 2 θ ) 5 ,
C ( 4 , 0 ; 0 ) 2 = 3 β 1 2 β 2 2 ( β 1 2 β 2 2 ) 4 2 ( β 1 2 + β 2 2 ) 5 ( β 1 2 + β 2 2 cos 2 θ ) .
A 4 = C ( 2 , 2 ; 0 ) 2 + C ( 0 , 4 ; 0 ) 2 + C ( 4 , 0 ; 0 ) 2 .
x = x ,
y = y cos γ + z sin γ ,
z = z cos γ y sin γ ,
A 0 = 2 1 + cos 2 γ A 0 .
H ̂ = k = 1 N 0 ( p ̂ k 2 2 m k + 1 2 m k ω 1 2 r k 2 ) ,
κ = i , j , μ ω i , j , μ a ̂ i , j , μ + a ̂ i , j , μ ,
Ψ ( t ) = i , j , μ exp ( α 2 2 ) α n n ! exp [ i i , j = 0 N ω i , j , μ n i , j t ] n 0 , 0 , n 0 , 1 , n 1 , 0 , n 1 , 1 , n 0 , 2 , , n l , m , , n N , 0 n , , 0 n 0 , 0 , n 0 , 1 , n 1 , 0 , n 1 , 1 , n 0 , 2 , , n l , m , , n N , 0 ,
n 0 , 0 , n 0 , 1 , n 1 , 0 , n 1 , 1 , n 0 , 2 , , n l , m , , n N , 0 n , , 0 = C n C ( 0 , 0 ; 0 ) C ( 0 , 2 ; 0 ) C ( l , m ; 0 ) C ( N , 0 ; 0 ) .
ψ ̂ ( r ) = i , j , μ ϕ i , j , μ ( r ) a ̂ i , j , μ ,
ψ ̂ + ( r ) = i , j , μ ϕ i , j , μ * ( r ) a ̂ i , j , μ + ,
G ( 1 ) ( r , r ) = Ψ ̂ + ( r ) Ψ ̂ ( r ) = i , j , i , j n 00 , . n l , m , ϕ i , j , μ * ( r ) ϕ i , j , μ ( r ) × n 0 , 0 , n 0 , 1 , n 1 , 0 , n 1 , 1 , n 0 , 2 , , n l , m , a ̂ i , j , μ + a ̂ i , j , μ n 0 , 0 , n 0 , 1 , n 1 , 0 , n 1 , 1 , n 0 , 2 , , n l , m , × C n 2 C 2 ( 0 , 0 ; 0 ) C 2 ( l , m ; 0 ) C 2 ( N , 0 ; 0 ) exp [ i l , l , m , m = 0 N ( ω l , m , μ n l , m ω l , m , μ n l , m ) t ] ,
G ( 2 ) ( r , r ) = Ψ ̂ + ( r ) Ψ ̂ + ( r ) Ψ ̂ ( r ) Ψ ̂ ( r ) = i , j , i 3 , j 3 n 00 , . n l , m , ϕ i , j , μ * ( r ) ϕ i 1 , j 1 , μ * ( r ) ϕ i 2 , j 2 , μ ( r ) ϕ i 3 , j 3 , μ ( r ) × n 0 , 0 , n 0 , 1 , , n l , m , a ̂ i , j , μ + a ̂ i 1 , j 1 , μ + a ̂ i 2 , j 2 , μ a ̂ i 3 , j 3 , μ n 0 , 0 , n 0 , 1 , n l , m , × C n 2 C 2 ( 0 , 0 ; 0 ) C 2 ( l , m ; 0 ) C 2 ( N , 0 ; 0 ) exp [ i l , l , m , m = 0 N ( ω l , m , μ n l , m ω l , m , μ n l , m ) t ] .
g ( 1 ) ( r , r ) = G ( 1 ) ( r , r ) G ( 1 ) ( r , r ) G ( 1 ) ( r , r ) ,
g ( 2 ) ( r , r ) = G ( 2 ) ( r , r ) G ( 1 ) ( r , r ) G ( 1 ) ( r , r ) .

Metrics