Abstract

Extremely small transmission change spectra due to 4f4f transitions in a rare-earth ion Eu3+ in a crystal and in an aqueous solution were measured, to the best of our knowledge, for the first time. By multichannel double-lock-in pump-probe spectroscopy, photoluminescence (PL) and difference transmission spectra were simultaneously recorded for an Eu3+:Y2SiO5 crystal with broadband lamp light sources for both the pump and the probe. A very weak transmission change signal hidden behind a 1–2 orders of magnitude more intense PL background signal was readily extracted. By comparing the transmission decrease due to the excited-state absorption (ESA) and the transmission increase due to the ground-state depletion it was found in the crystal that the oscillator strengths for the ff transitions to the same final states are of the same order of magnitude for both the spin-allowed transitions from D05 in the ESA and the spin-forbidden transitions from F07 in the ground-state absorption (GSA). In addition, crystal-field split ff transitions that have been hidden by the intense charge-transfer band in the GSA were revealed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151-158 (1995).
    [CrossRef]
  2. S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
    [CrossRef]
  3. T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
    [CrossRef]
  4. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562 (2001).
    [CrossRef]
  5. R. Yano, M. Mitsunaga, and N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory,” J. Opt. Soc. Am. B 9, 992-997 (1992).
    [CrossRef]
  6. M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752-754 (1994).
    [CrossRef] [PubMed]
  7. R. S. Pandher, A. Jackson, A. Davis, and B. R. Reddy, “Site-selective hole burning in Eu3+:Y2SiO5,” Appl. Opt. 38, 5662-5665 (1999).
    [CrossRef]
  8. J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
    [CrossRef]
  9. R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884-1886 (1991).
    [CrossRef] [PubMed]
  10. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
    [CrossRef] [PubMed]
  11. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  12. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  13. W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191-2193 (2000).
    [CrossRef]
  14. W. Tian, R. S. Pandher, and B. R. Reddy, “Efficient infrared quantum counter and excited-state absorption cross-section measurements in Eu3+:CaF2,” J. Opt. Soc. Am. B 18, 1627-1631 (2001).
    [CrossRef]
  15. N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
    [CrossRef]
  16. E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
    [CrossRef]
  17. J. Goree, “Double lock-in detection for recovering weak coherent radio frequency signals,” Rev. Sci. Instrum. 56, 1662-1664 (1985).
    [CrossRef]
  18. G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171-2180 (1963).
    [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
    [CrossRef]
  20. M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
    [CrossRef]
  21. R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
    [CrossRef]

2007

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

2004

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

2001

2000

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191-2193 (2000).
[CrossRef]

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

1999

1998

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

1995

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

1994

T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
[CrossRef]

M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752-754 (1994).
[CrossRef] [PubMed]

1992

1991

1985

J. Goree, “Double lock-in detection for recovering weak coherent radio frequency signals,” Rev. Sci. Instrum. 56, 1662-1664 (1985).
[CrossRef]

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
[CrossRef]

1963

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171-2180 (1963).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Adachi, S.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Bleckmann, A.

T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
[CrossRef]

Cone, R. L.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

Danger, T.

T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
[CrossRef]

Davis, A.

Equall, R. W.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
[CrossRef]

Fornasiero, L.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

Goree, J.

J. Goree, “Double lock-in detection for recovering weak coherent radio frequency signals,” Rev. Sci. Instrum. 56, 1662-1664 (1985).
[CrossRef]

Hirabayashi, M.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

Hölsä, J.

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

Huber, G.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
[CrossRef]

Ishii, N.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Jackson, A.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Karaki, K.

Kimura, T.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Kobayashi, T.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

Kück, S.

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

Kushida, T.

M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
[CrossRef]

Lamminmäki, R-J.

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

Longdell, J. J.

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

Matsuda, H.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Meijerink, A.

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

Mitsunaga, M.

Mix, E.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

Nishimura, G.

M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
[CrossRef]

Nosaka, Y.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171-2180 (1963).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Pandher, R. S.

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
[CrossRef]

Reddy, B. R.

Sasaki, H.

Sellars, M. J.

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

Tanaka, M.

M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
[CrossRef]

Tian, W.

W. Tian, R. S. Pandher, and B. R. Reddy, “Efficient infrared quantum counter and excited-state absorption cross-section measurements in Eu3+:CaF2,” J. Opt. Soc. Am. B 18, 1627-1631 (2001).
[CrossRef]

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191-2193 (2000).
[CrossRef]

Tokunaga, E.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

Uesugi, N.

Wegh, R. T.

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

Yano, R.

Appl. Opt.

Appl. Phys. B

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67, 151-156 (1998).
[CrossRef]

T. Danger, A. Bleckmann, and G. Huber, “Stimulated emission and laser action of Pr3+-doped YAlO3,” Appl. Phys. B 58, 413-420 (1994).
[CrossRef]

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

J. Appl. Phys.

W. Tian, R. S. Pandher, and B. R. Reddy, “Infrared quantum counter studies in europium doped lanthanum trifluoride,” J. Appl. Phys. 88, 2191-2193 (2000).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171-2180 (1963).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+,” J. Chem. Phys. 49, 4450-4455 (1968).
[CrossRef]

J. Lumin.

R. T. Wegh, A. Meijerink, R-J. Lamminmäki, and J. Hölsä, “Extending Dieke's diagram,” J. Lumin. 87-89, 1002-1004 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Phys. Rev. A

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopyby real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004).
[CrossRef]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

Phys. Rev. B

M. Tanaka, G. Nishimura, and T. Kushida, “Contribution of J mixing to the D05-F07 transition of Eu3+ ions in several host matrices,” Phys. Rev. B 49, 16917-16925 (1994).
[CrossRef]

Phys. Rev. Lett.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179-2182 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

J. Goree, “Double lock-in detection for recovering weak coherent radio frequency signals,” Rev. Sci. Instrum. 56, 1662-1664 (1985).
[CrossRef]

Surf. Sci.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, “Pockels effect of water in the electric double layer at the interface between water and transparent electrode,” Surf. Sci. 601, 735-741 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. A Hg Xe lamp and a Xe lamp were used for the pump and probe lights, respectively. The probe beam was focused through a 400 μ m pinhole on the fiber. AL, achromatic lens; SQL, synthetic quartz lens; F, filter; S, shutter; P, pinhole; C, chopper; APD, avalanche photodiode. For the EuCl 3 aqueous solution, an InGaN laser diode was used for the pump instead of the Hg Xe lamp.

Fig. 2
Fig. 2

(a) Absorbance (GSA), (b) PL, and (c) absorbance change Δ A (ESA) spectra of the Eu 3 + : Y 2 SiO 5 crystal. The peaks labeled “excitation” are a part of the scattered pump spectrum (Hg 435.84 and 404.66 nm lines). The PL spectrum is not corrected for spectral sensitivity of the instruments. In (c), the GSA spectrum shifted by the F 0 7 D 0 5 transition energy of 17 250 cm 1 along the horizontal axis is also shown for comparison with the ESA. Five characteristic regions are indexed by A, B, C, D, and E. The vertical dashed–dotted line highlights negative-peak absorption-saturation signals. Inset: ESA spectrum in 21 000 22 500 cm 1 is magnified.

Fig. 3
Fig. 3

GSA and ESA spectra of the EuCl 3 aqueous solution. The GSA spectrum is shifted by 17 250 cm 1 on the horizontal axis.

Fig. 4
Fig. 4

Detailed Δ A spectrum in the selected region in Fig. 2c. The three arrows indicate small negative peaks located at the same wavenumbers as the peaks in the GSA spectrum. These are induced by ground-state depletion.

Tables (1)

Tables Icon

Table 1 Oscillator Strength of Main Peaks in ESA and GSA for Eu 3 + : Y 2 SiO 5

Metrics