Abstract

A theoretical model is constructed that describes the operation of a pulsed mode-locked laser simultaneously operating at N frequency channels. The model, which is a combination of standard WDM interactions in the canonical master mode-locking model subject to both self- and cavity-saturating gain effects, results in mode-locking dynamics that qualitatively describe the N-frequency channel operation. It is further in agreement with the observed experimental dual-frequency (N=2) laser operation. In the model, it is the combination of self- and cavity-gain saturation that simultaneously allows for mode-locking at N frequencies, which can be of significantly different energies and pulse widths. The model provides a framework for understanding the operation and stability of identically mode-locked pulses at multiple frequencies, thus contributing to the characterization of the increasingly important and timely technology of dual- and multifrequency mode-locked laser cavities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription