Abstract

High-optical-quality single crystals of Yb3+-doped YAlO3 perovskite (Yb3+:YAP) were grown by the Czochralski (CZ) method and characterized. From polarized absorption and emission spectra, assignment of the Yb3+ energy levels was proposed. Yb3+ concentration dependence of experimental decay times allows us to study concentration quenching and suggests both strong radiative and nonradiative energy transfers, from Yb3+ ions to impurities, well described by a limited diffusion model. Yb3+:YAP crystal is a potentially useful polarized laser gain medium in laser-diode-pumped solid-state configurations. 5.7at.% Yb3+ optimum concentration was deduced by prediction of laser performances. In addition, thermal properties and figure of merit, which is defined from our own model taking into account only spectroscopic data, were also compared with those of Yb3+-doped YAG.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
    [CrossRef]
  2. G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloys Compd. 451, 1-11 (2008).
    [CrossRef]
  3. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
    [CrossRef]
  4. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
    [CrossRef]
  5. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
    [CrossRef]
  6. G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
    [CrossRef]
  7. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
    [CrossRef]
  8. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
    [CrossRef]
  9. M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
    [CrossRef]
  10. G. A. Massey, “Measurement of devices parameters for Nd:YAlO3 lasers,”I IEEE J. Quantum Electron. 8, 669-674 (1972).
    [CrossRef]
  11. M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205-3208 (1973).
    [CrossRef]
  12. T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
    [CrossRef]
  13. M. Nikl, “Wide band gap scintillation materials: progress in the technology and material understanding,” Phys. Status Solidi A 178, 595-601 (2000).
    [CrossRef]
  14. S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
    [CrossRef]
  15. R. Ifflander, Solid-State Lasers for Materials Processing, Fundamental Relations and Technical Realizations (Springer-Verlag, 2001).
  16. M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
    [CrossRef]
  17. I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
    [CrossRef]
  18. I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
    [CrossRef]
  19. A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
    [CrossRef]
  20. J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
    [CrossRef]
  21. J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
    [CrossRef]
  22. A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
    [CrossRef]
  23. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
    [CrossRef]
  24. P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
    [CrossRef]
  25. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343-1345 (1994).
    [CrossRef] [PubMed]
  26. N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
    [CrossRef]
  27. M. P. Hehlen, “Effect of radiation trapping on measured excited-state lifetimes in solids,” in OSA TOPS on Advanced Solid-State Lasers, S.A.Payne and C.Pollock, Eds., Vol. 1 (Optical Society of America, 2006) p. 530.
  28. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
    [CrossRef]
  29. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
    [CrossRef]
  30. D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
    [CrossRef]
  31. X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
    [CrossRef]
  32. X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
    [CrossRef]
  33. E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970).
    [CrossRef]
  34. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
    [CrossRef]
  35. Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
    [CrossRef]
  36. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
    [CrossRef]
  37. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
    [CrossRef]
  38. F. Auzel, “Materials for ionic solid state lasers,” in Spectroscopy of Solid-State Laser-Type Materials, B.DiBartolo, ed. (Plenum, 1987), p. 293.
    [CrossRef]
  39. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  40. T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006).
    [CrossRef]
  41. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005).
    [CrossRef]
  42. Kuleshov, from Minsk at the ICONO/LAT 2007 http://www1.ilc.by/news/news-002.html (May 2007).
  43. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002).
    [CrossRef]
  44. A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001).
    [CrossRef]
  45. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]
  46. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
    [CrossRef] [PubMed]
  47. S. S. Ballard and J. S. Browle, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, 1986), p. 49.
  48. J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances,” Ph.D. dissertation (Université Pierre and Marie Curie-Paris VI, 2006).

2008 (1)

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloys Compd. 451, 1-11 (2008).
[CrossRef]

2007 (3)

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

2006 (4)

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006).
[CrossRef]

2005 (4)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

2004 (5)

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

2003 (6)

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

2002 (2)

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
[CrossRef]

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002).
[CrossRef]

2001 (2)

A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

2000 (1)

M. Nikl, “Wide band gap scintillation materials: progress in the technology and material understanding,” Phys. Status Solidi A 178, 595-601 (2000).
[CrossRef]

1997 (2)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
[CrossRef] [PubMed]

1996 (2)

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
[CrossRef]

1994 (1)

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

1988 (1)

1982 (1)

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

1980 (1)

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

1973 (1)

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205-3208 (1973).
[CrossRef]

1972 (1)

G. A. Massey, “Measurement of devices parameters for Nd:YAlO3 lasers,”I IEEE J. Quantum Electron. 8, 669-674 (1972).
[CrossRef]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1970 (1)

E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970).
[CrossRef]

1969 (1)

M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
[CrossRef]

Andringa, K.

M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
[CrossRef]

Antic-Fidancev, E.

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

F. Auzel, “Materials for ionic solid state lasers,” in Spectroscopy of Solid-State Laser-Type Materials, B.DiBartolo, ed. (Plenum, 1987), p. 293.
[CrossRef]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

Ballard, S. S.

S. S. Ballard and J. S. Browle, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, 1986), p. 49.

Bass, M.

M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
[CrossRef]

Basun, S.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Belogurov, S.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Bensalah, A.

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Boulon, G.

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloys Compd. 451, 1-11 (2008).
[CrossRef]

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002).
[CrossRef]

A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001).
[CrossRef]

Bourdet, G.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Brenier, A.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002).
[CrossRef]

A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001).
[CrossRef]

Bressi, G.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Browle, J. S.

S. S. Ballard and J. S. Browle, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, 1986), p. 49.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Byer, R. L.

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Canibano, H.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Carugno, G.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Chanteloup, J.-C.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Christensen, H. P.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

Cohen-Adad, M. T.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

Collombet, A.

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Czarnacki, W.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Deng, P.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
[CrossRef]

Dong, Y.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Dujardin, C.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Eganyan, A.

Fagundes-Peters, D.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Fan, T. Y.

Fukuda, T.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Gabbe, D. R.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

Gâcon, J. C.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Garnier, N.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Gaume, R.

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

Goutaudier, C.

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

Guerassimova, N.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Guyot, Y.

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Haumesser, P.-H.

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

He, X.

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, “Effect of radiation trapping on measured excited-state lifetimes in solids,” in OSA TOPS on Advanced Solid-State Lasers, S.A.Payne and C.Pollock, Eds., Vol. 1 (Optical Society of America, 2006) p. 530.

Hofstaetter, A.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Huber, G.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Ifflander, R.

R. Ifflander, Solid-State Lasers for Materials Processing, Fundamental Relations and Technical Realizations (Springer-Verlag, 2001).

Ito, M.

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24, 3023-3033 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Jaque, D.

Jenssen, H. P.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

Jiang, B.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Jie, M. Y.

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Kamenskikh, I. A.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Kapusta, M.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Kikuchi, M.

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

Kirm, M.

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Kochurikin, V. V.

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Kubota, Y.

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Laguta, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Lebbou, K.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Ledoux, G.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Li, H.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Lünstedt, K.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Martynyuk, N.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Massey, G. A.

G. A. Massey, “Measurement of devices parameters for Nd:YAlO3 lasers,”I IEEE J. Quantum Electron. 8, 669-674 (1972).
[CrossRef]

McIntosh, B.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Merkle, L. D.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Mikhailin, V.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

Miyata, T.

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

Moncorgé, R.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Moszynski, M.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Muramatsu, F.

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

Nakazawa, E.

E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970).
[CrossRef]

Nikl, M.

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

M. Nikl, “Wide band gap scintillation materials: progress in the technology and material understanding,” Phys. Status Solidi A 178, 595-601 (2000).
[CrossRef]

Novoselov, A.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Ogino, H.

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

Ono, S.

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

Panczer, G.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Pang, H.

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Pedrini, C.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Pejchal, J.

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

Petermann, K.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Peters, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

Petit, J.

J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances,” Ph.D. dissertation (Université Pierre and Marie Curie-Paris VI, 2006).

Petrosyan, A.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Petrosyan, A. G.

Pinto, A.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

Risk, W. P.

Ródenas, A.

Sarukura, N.

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

Sato, H.

Shim, J. B.

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

Shionoya, S.

E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970).
[CrossRef]

Si, J. L.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

Solovieva, N.

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

Spassky, D.

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Su, F.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Su, L.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343-1345 (1994).
[CrossRef] [PubMed]

Szawlowski, M.

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Taira, T.

T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of CW Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
[CrossRef] [PubMed]

Takeda, T.

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

Tomiki, T.

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

Tsunekane, M.

T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005).
[CrossRef]

Tulloch, W. M.

Ueda, K.

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
[CrossRef]

Uehara, N.

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
[CrossRef]

Vasil'ev, A.

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

Verdun, H.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Viana, B.

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

Vivien, D.

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

Wang, X.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205-3208 (1973).
[CrossRef]

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
[CrossRef]

Xu, J.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Xu, X.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Yan, C.

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Yang, P.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
[CrossRef]

Yin, Z.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
[CrossRef]

Yoon, D. H.

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

Yoshikawa, A.

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

Zeng, X.

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Zhang, D.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Zhang, G.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Zhao, G.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Zhao, Z.

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Zhou, G.

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. J. Weber, M. Bass, and K. Andringa, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15, 342-345 (1969).
[CrossRef]

Europhys. Lett. (1)

A. Brenier and G. Boulon, “New criteria to choose the best Yb3+-doped laser crystals,” Europhys. Lett. 55, 647-652 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. A. Massey, “Measurement of devices parameters for Nd:YAlO3 lasers,”I IEEE J. Quantum Electron. 8, 669-674 (1972).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb[3+] doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

J. Alloys Compd. (2)

G. Boulon, “Why so deep research on Yb3+-doped optical inorganic materials?” J. Alloys Compd. 451, 1-11 (2008).
[CrossRef]

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2002).
[CrossRef]

J. Appl. Phys. (3)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, “Growth and spectroscopic analysis of Yb3+-doped Y 3 Al 5 O 12 fiber single crystals,” J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205-3208 (1973).
[CrossRef]

J. B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, and D. H. Yoon, “Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals,” J. Appl. Phys. 95, 3063-3068 (2004).
[CrossRef]

J. Cryst. Growth (3)

J. B. Shim, A. Yoshikawa, M. Nikl, N. Solovieva, J. Pejchal, D. H. Yoon, and T. Fukuda, “Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method,” J. Cryst. Growth 256, 298-304 (2003).
[CrossRef]

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xu, Z. Zhao, X. He, H. Pang, M. Y. Jie, and C. Yan, “Comparison of spectroscopic parameters of 15at%Yb:YAlO3 and 15at%Yb:Y3Al5O12,” J. Cryst. Growth 274, 106-112 (2005).
[CrossRef]

Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H. Li, and J. L. Si, “Cooperative and charge transfer luminescence in Yb3+-doped yttrium aluminum perovskite (YAlO3),” J. Cryst. Growth 289, 676-680 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

T. Takeda, T. Miyata, F. Muramatsu, and T. Tomiki, “Fast decay U.V. Phosphor-YAlO3:Ce,” J. Electrochem. Soc. 127, 438-444 (1980).
[CrossRef]

J. Lumin. (3)

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102, 417-425 (2003).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125, 238-247 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys.: Condens. Matter (3)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys.: Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

I. A. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, and A. Vasil'ev, “Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP,” J. Phys.: Condens. Matter 17, 5587-5594 (2005).
[CrossRef]

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal field analysis of new Yb-doped laser materials,” J. Phys.: Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

N. Uehara, K. Ueda, and Y. Kubota, “Spectroscopic measurement of a high-concentration Yb3+:LiYF 4 crystal,” Jpn. J. Appl. Phys., Part 1 35, L499-L501 (1996).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide,” Jpn. J. Appl. Phys., Part 2 44, L 1164-L 1167 (2005).
[CrossRef]

Mol. Phys. (1)

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

S. Belogurov, G. Bressi, G. Carugno, M. Moszynski, W. Czarnacki, M. Kapusta, and M. Szawlowski, “Characterization of Yb:YAG and Yb:YAP scintillators by means of LAAPD at temperature around 100K,” Nucl. Instrum. Methods Phys. Res. A 496, 385-404 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (7)

A. Yoshikawa, H. Ogino, J. B. Shim, V. V. Kochurikin, M. Nikl, N. Solovieva, S. Ono, N. Sarukura, M. Kikuchi, and T. Fukuda, “Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals,” Opt. Mater. 26, 529-534 (2004).
[CrossRef]

X. Wang, X. Xu, Z. Zhao, B. Jiang, J. Xu, G. Zhao, P. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29, 1662-1666 (2007).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103-109 (2003).
[CrossRef]

I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater. 24, 267-274 (2003).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling-down technique for laser application. Part I: Spectroscopic properties and assignment of energy levels,” Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, “Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization,” Opt. Mater. 28, 1-8 (2006).
[CrossRef]

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Phys. Rev. B (2)

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, “Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders,” Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

Phys. Rev. Lett. (1)

E. Nakazawa and S. Shionoya, “Cooperative luminescence in YbPO4,” Phys. Rev. Lett. 25, 1710-1712 (1970).
[CrossRef]

Phys. Status Solidi A (1)

M. Nikl, “Wide band gap scintillation materials: progress in the technology and material understanding,” Phys. Status Solidi A 178, 595-601 (2000).
[CrossRef]

Proc. SPIE (1)

T. Taira and M. Tsunekane, “High-power edge pumped Yb:YAG single crystal/YAG ceramics hybrid microchip laser,” Proc. SPIE 6216, 621607 (2006).
[CrossRef]

Radiat. Meas. (1)

A. Yoshikawa, H. Ogino, J. B. Shim, M. Nikl, N. Solovieva, and T. Fukuda, “Growth and luminescent properties of Yb3+-doped oxide single crystals for scintillator application,” Radiat. Meas. 38, 467-470 (2004).
[CrossRef]

Other (6)

R. Ifflander, Solid-State Lasers for Materials Processing, Fundamental Relations and Technical Realizations (Springer-Verlag, 2001).

F. Auzel, “Materials for ionic solid state lasers,” in Spectroscopy of Solid-State Laser-Type Materials, B.DiBartolo, ed. (Plenum, 1987), p. 293.
[CrossRef]

M. P. Hehlen, “Effect of radiation trapping on measured excited-state lifetimes in solids,” in OSA TOPS on Advanced Solid-State Lasers, S.A.Payne and C.Pollock, Eds., Vol. 1 (Optical Society of America, 2006) p. 530.

Kuleshov, from Minsk at the ICONO/LAT 2007 http://www1.ilc.by/news/news-002.html (May 2007).

S. S. Ballard and J. S. Browle, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, 1986), p. 49.

J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances,” Ph.D. dissertation (Université Pierre and Marie Curie-Paris VI, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Photo of Cz-grown Y 1 - x Yb x AlO 3 (with x = 0.3 ) single crystal and (b) its cross section along the c axis.

Fig. 2
Fig. 2

Variation of the chemical composition of Y 1 - x Yb x AlO 3 [with (a) x = 0.1 and (b) x = 0.2 ] single crystals observed on planes parallel to the growth axis. C 0 and C s represent ion concentration in the starting melt and in the crystal at the solidification fraction ( g ) , respectively.

Fig. 3
Fig. 3

Yb 3 + concentration dependence of the lattice constant along the a, b, and c axes of Y 1 - x Yb x AlO 3 .

Fig. 4
Fig. 4

X-ray rocking curve of Y 1 - x Yb x AlO 3 (with x = 0.1 ).

Fig. 5
Fig. 5

Room-temperature absorption and emission of polarized (// a axis) spectra of Y 1 - x Yb x AlO 3 (with x = 0.005 ).

Fig. 6
Fig. 6

F 5 2 2 Stark levels barycenter as a function of F 7 2 2 Stark levels barycenter in different Yb 3 + -doped hosts.

Fig. 7
Fig. 7

Concentration dependence of F 5 2 2 experimental decay time in Yb 3 + : YAP .

Fig. 8
Fig. 8

Concentration dependence of F 5 2 2 experimental decay time in Yb 3 + : YAG .

Fig. 9
Fig. 9

Time-resolved upconversion visible emission spectrum of Y 1 - x Yb x AlO 3 (with x = 0.2 ) crystals under λ = 932 nm IR excitation of isolated Yb 3 + ions. Pairs are clearly detected at short time by convolution of the IR emission spectrum. The Er 3 + green transition is S 3 2 4 I 15 2 4 . The Tm 3 + blue transition is G 4 1 H 6 3 .

Fig. 10
Fig. 10

Decay times of Yb 3 + pair ( 500 nm ) and Er 3 + S 3 2 4 I 15 2 4 ( 540 nm ) , F 9 2 4 I 15 2 4 ( 655 nm ) emissions of Y 1 x Yb x AlO 3 (with x = 0.2 ).

Fig. 11
Fig. 11

Energy transfer between Yb 3 + , Tm 3 + , and Er 3 + rare-earth ions according to the Dieke diagram.

Fig. 12
Fig. 12

IR absorption spectrum of OH - impurities in 2 at. % Yb : YAP at around 3300 cm 1 .

Fig. 13
Fig. 13

(a) Concentration dependence of experimental decay times in Yb 3 + : YAP fitted with correction for the self-trapping effect according to Eq. (6). Two concentration scales have been mentioned both in at. % (upper axis) and 10 20 at. cm 3 (lower axis). (b) Concentration dependence of experimental decay times in Yb 3 + : YAP fitted with the theoretical curve for limited-diffusion case according to Eq. (6) compared in the right scale with the optimization of the optical gain by the product τ ( N ) N . The Yb 3 + optimum theoretical concentration can be read at the maximum: 5.7 at. % .

Fig. 14
Fig. 14

Figure of merit for several promising Yb 3 + -doped hosts, including Yb 3 + : YAP , studied in this work.

Tables (2)

Tables Icon

Table 1 Stark Levels of Yb 3 + : YAP

Tables Icon

Table 2 Impurities in (1) 20% Yb 3 + : YAP (ppm/wt) and (2) in 5% Yb 3 + : YAG (ppm/wt)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

C s C 0 = k eff ( 1 g ) k 1 eff .
1 τ rad = A i f = g f g i 8 π n 2 c λ 0 4 σ f i ( λ ) d λ ,
τ t = τ i ( 1 + σ N l ) ,
R Q = 1 τ 1 τ w = K N 2 ,
K = 8 π C 1 4 C ss 3 4 ,
C = ( R 0 R ) s τ s ,
τ ( N ) = τ rad [ 1 + ( 9 2 π ) ( N N 0 ) 2 ] = τ w [ 1 + ( 9 2 π ) ( N N 0 ) 2 ] ,
R 0 = ( 3 4 π N 0 ) 1 3 .
τ ( N ) = τ rad ( 1 + σ N l ) 1 + ( 9 2 π ) ( N N 0 ) 2
τ w = 0.60 ms ; σ l = 1.53 × 10 21 cm 3 ( 0.3 cm 3 % ) ;
and N 0 = 1.34 × 10 21 cm 3 ( 6.8 % ) ,
τ w = 0.95 ms ; σ l = 1.9 × 10 22 cm 3 ( 0.025 cm 3 % ) ;
and N 0 = 2.36 × 10 21 cm 3 ( 17 % ) [ 2 ] .
G = exp [ σ g σ a N τ ( N ) l ] ,

Metrics