Abstract

Fourier transform infrared (FTIR) spectroscopy combined with a computer code for optical analysis of multilayer structures is implemented in this study as a nondestructive depth profiling tool. High-energy (1.2MeV) P implanted Si is examined in the as-implanted state and after annealing at 950°C. Ion implantation led to the formation of a buried amorphous layer with transition regions that can be described by half-Gaussian segments. Annealing yielded a free carrier concentration profile that can be modeled by a Pearson distribution as confirmed by spreading resistance profilometry (SRP). The proposed optical analysis model incorporates mobility variation versus depth, and the validity of replacing the varying mobility with a constant average value in the analysis of FTIR data is tested.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Giles, “Ion implantation,” in VLSI Technology, S.M.Sze, ed. (Mc Graw Hill, 1988), pp. 327-374.
  2. J. F. Ziegler, Handbook of Ion Implantation Technology (North-Holland, 1992).
  3. D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985).
    [CrossRef]
  4. R. B. Fair, “Diffusion and ion implantation in silicon,” in Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), G.E.McGuire, ed. (Noyes Publications, 1988), pp. 455-540.
  5. C. C. Katsidis, “Study of the effects of ion implantation on the optical, structural and electrical properties of silicon and SIMOX structures using fast Fourier transform spectroscopy in the infrared,” Ph.D. dissertation (Aristotle University of Thessaloniki, 2002).
  6. M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981).
    [CrossRef]
  7. A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
    [CrossRef]
  8. B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
    [CrossRef]
  9. K. Suzuki, “Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions,” Fujitsu Sci. Tech. J. 39, 138-149 (2003).
  10. W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
    [CrossRef]
  11. G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
    [CrossRef]
  12. C. C. Katsidis, “Depth profiling of ion implanted materials with skewed doping distributions using FTIR spectroscopy,” Appl. Opt. 47, 213-223 (2008).
    [CrossRef] [PubMed]
  13. S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.
  14. J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
    [CrossRef]
  15. A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.
  16. R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
    [CrossRef]
  17. S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
    [CrossRef]
  18. N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).
  19. A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
    [CrossRef]
  20. C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
    [CrossRef]
  21. D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
    [CrossRef]
  22. N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
    [CrossRef]
  23. C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
    [CrossRef]
  24. H. Tsuya, “Present status and prospect of Si wafers for ultra large scale integration,” Jpn. J. Appl. Phys., Part 1 43, 4055-4067 (2004).
    [CrossRef]
  25. A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
    [CrossRef]
  26. R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
    [CrossRef]
  27. T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
    [CrossRef]
  28. S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
    [CrossRef]
  29. D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
    [CrossRef]
  30. K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
    [CrossRef]
  31. K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
    [CrossRef]
  32. E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
    [CrossRef]
  33. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
    [CrossRef] [PubMed]
  34. S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
    [CrossRef]
  35. W. Karstens, D. Bobela, and D. Y. Smith, “Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon,” J. Opt. Soc. Am. A 23, 723-729 (2006).
    [CrossRef]
  36. G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
    [CrossRef]
  37. H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
    [CrossRef]
  38. L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
    [CrossRef]
  39. J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387-410 (1962).
  40. W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
    [CrossRef]
  41. G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
    [CrossRef]
  42. J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004).
    [CrossRef]

2008 (1)

2007 (5)

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
[CrossRef]

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

2006 (5)

E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
[CrossRef]

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

W. Karstens, D. Bobela, and D. Y. Smith, “Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon,” J. Opt. Soc. Am. A 23, 723-729 (2006).
[CrossRef]

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

2005 (3)

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
[CrossRef]

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

2004 (3)

H. Tsuya, “Present status and prospect of Si wafers for ultra large scale integration,” Jpn. J. Appl. Phys., Part 1 43, 4055-4067 (2004).
[CrossRef]

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004).
[CrossRef]

2003 (1)

K. Suzuki, “Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions,” Fujitsu Sci. Tech. J. 39, 138-149 (2003).

2002 (2)

K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
[CrossRef]

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
[CrossRef] [PubMed]

2001 (2)

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

2000 (1)

N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
[CrossRef]

1999 (1)

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

1998 (1)

W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
[CrossRef]

1996 (2)

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

1993 (1)

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

1992 (1)

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

1985 (1)

D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985).
[CrossRef]

1983 (1)

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
[CrossRef]

1982 (1)

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

1981 (2)

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981).
[CrossRef]

1980 (1)

W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
[CrossRef]

1962 (1)

J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387-410 (1962).

Agarwal, A.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Andrieu, F.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Bak-Misiuk, J.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Barcz, A.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Barnes, J.-P.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Benedetti, A.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Bernardini, J.

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Biswas, S.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Bobela, D.

Bogen, S.

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

Boudinov, H.

R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
[CrossRef]

Bourdelle, K. K.

K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
[CrossRef]

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Bryja, L.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Burchard, B.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Chan, H. Y.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Chan, L.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Chanbasha, A. R.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Chaudhry, S.

K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
[CrossRef]

Chawda, S. G.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Christofides, C.

E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
[CrossRef]

Chu, J.

K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
[CrossRef]

Clarysse, T.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Claudio, G.

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Claverie, A.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Collart, E. J. H.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Cowern, N. E. B.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Cristiano, F.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Cristoloveanu, S.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Dalponte, M.

R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
[CrossRef]

De Jaeger, B.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

De Oliveira, R. M.

R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
[CrossRef]

Deboy, G.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Deleonibus, S.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Delfino, M.

M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981).
[CrossRef]

Demeurisse, C.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Drew, H. D.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Duffy, R.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Dunmore, F.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Dupré, C.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Eaglesham, D. J.

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

Ernst, T.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Fair, R. B.

R. B. Fair, “Diffusion and ion implantation in silicon,” in Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), G.E.McGuire, ed. (Noyes Publications, 1988), pp. 455-540.

Faynot, O.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Fazzini, P. F.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Felch, S. B.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Fiory, A. T.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Fornara, P.

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Fredrickson, J. E.

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Frey, L.

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

Fuchs, M.

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

Gawlik, G.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Gennaro, S.

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Ghatak, J.

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

Ghibaudo, G.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Giles, M. D.

M. D. Giles, “Ion implantation,” in VLSI Technology, S.M.Sze, ed. (Mc Graw Hill, 1988), pp. 327-374.

Gong, L.

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

Gossmann, H. J.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Gossmann, H. J. L.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Gui, D.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Gwilliam, R.

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Haberger, K.

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Hallén, A.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Harris, M.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Hartmann, J.-M.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Hatzopoulos, N.

N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

Hemment, P. L. F.

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

Henkelmann, R.

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Hoffmann, K.

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Hoflijk, I.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Hubler, G. K.

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Hutter, H.

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

Intarasiri, S.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Irvin, J. C.

J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387-410 (1962).

Ivanova, K.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Jacobson, D. C.

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

Janssens, T.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Jensen, J.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Jung, W.

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

Kanjilal, D.

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

Karrai, K.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Karstens, W.

Katcki, J.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Katsidis, C. C.

C. C. Katsidis, “Depth profiling of ion implanted materials with skewed doping distributions using FTIR spectroscopy,” Appl. Opt. 47, 213-223 (2008).
[CrossRef] [PubMed]

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
[CrossRef] [PubMed]

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

C. C. Katsidis, “Study of the effects of ion implantation on the optical, structural and electrical properties of silicon and SIMOX structures using fast Fourier transform spectroscopy in the infrared,” Ph.D. dissertation (Aristotle University of Thessaloniki, 2002).

Kögler, R.

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

Krecar, D.

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

Lanzerotti, L.

S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.

Lee, C. C.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Lioudakis, E.

E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
[CrossRef]

Liu, R.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Liu, S.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Liu, Y. M.

W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
[CrossRef]

Lu, J.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Madishetty, S.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Malmberg, P. R.

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Mangelinck, D.

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Masetti, G.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
[CrossRef]

Mattis, R. L.

W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
[CrossRef]

McCoy, S. P.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

McKinley, J. M.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Meijer, J.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Meuris, M.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Misiuk, A.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Mitchell, I. V.

S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
[CrossRef]

Mitsas, C. L.

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

Modine, F. A.

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Montgomery, N. J.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Morris, W.

S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.

Mulcahy, C.

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Mulcahy, C. P. A.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Müller, K.

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Ng, C. M.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Othonos, A.

E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
[CrossRef]

Ottoson, M.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Pawlak, B. J.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Poate, J. M.

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

Portavoce, A.

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Possnert, G.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Pramanik, D.

D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985).
[CrossRef]

Prinke, G.

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Rangelow, I. W.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Ratajczak, J.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Ravindra, N. M.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

Razouk, R. R.

M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981).
[CrossRef]

Rivallin, P.

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

Robinson, A. K.

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

Rüb, M.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Rubin, L.

S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.

Ruffel, S.

S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
[CrossRef]

Ryssel, H.

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Satpati, B.

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

Satta, A.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Saxena, A. N.

D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985).
[CrossRef]

Sealy, B. J.

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

Severi, M.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
[CrossRef]

Siapkas, D. I.

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
[CrossRef] [PubMed]

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

Simoen, E.

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Simola, R.

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Simpson, P.

S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
[CrossRef]

Singkarat, S.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Sinha, O. P.

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

Skorupa, W.

N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
[CrossRef]

Smith, D. Y.

Solmi, S.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
[CrossRef]

Som, T.

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

Spitzer, W. G.

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Srinivasan, M. P.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Surma, B.

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Suzuki, K.

K. Suzuki, “Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions,” Fujitsu Sci. Tech. J. 39, 138-149 (2003).

Thomas, G. A.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Thurber, W. R.

W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
[CrossRef]

Tonghe, Z.

W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
[CrossRef]

Tsuya, H.

H. Tsuya, “Present status and prospect of Si wafers for ultra large scale integration,” Jpn. J. Appl. Phys., Part 1 43, 4055-4067 (2004).
[CrossRef]

Vandervorst, W.

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Voldman, S.

S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.

Volland, B. E.

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

Waddell, C. N.

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Wee, A. T. S.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Wilson, R.

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Yakovlev, N. L.

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Yan, L.

W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
[CrossRef]

Yu, L. D.

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

Yuguang, W.

W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004).
[CrossRef]

J. F. Ziegler, Handbook of Ion Implantation Technology (North-Holland, 1992).

Zorba, T.

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, “Range parameters of boron implanted into silicon,” Appl. Phys. 24, 39-43 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, “Suppression of phosphorus diffusion by carbon co-implantation,” Appl. Phys. Lett. 89, 062102 (2006).
[CrossRef]

Appl. Surf. Sci. (2)

D. Krecar, M. Fuchs, R. Kögler, and H. Hutter, “SIMS investigation of gettering centres produced by phosphorous MeV ion implantation,” Appl. Surf. Sci. 252, 278-281 (2005).
[CrossRef]

N. L. Yakovlev, C. C. Lee, H. Y. Chan, M. P. Srinivasan, C. M. Ng, D. Gui, L. Chan, R. Liu, A. T. S. Wee, A. R. Chanbasha, N. J. Montgomery, C. P. A. Mulcahy, S. Biswas, H. J. L. Gossmann, and M. Harris, “Collaborative SIMS study and simulations of implanted dopants in Si,” Appl. Surf. Sci. 261, 701-704 (2006).

Bell Syst. Tech. J. (1)

J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387-410 (1962).

Cryst. Res. Technol. (1)

A. Misiuk, A. Barcz, J. Ratajczak, J. Katcki, J. Bak-Misiuk, L. Bryja, B. Surma, and G. Gawlik, “Structure of oxygen-implanted silicon single crystals treated at ≥1400K under high argon pressure,” Cryst. Res. Technol. 36, 933-941 (2001).
[CrossRef]

Diffus. Defect Data (1)

A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, and P. Fornara, “Dopant diffusion during amorphous silicon crystallization,” Diffus. Defect Data 264, 33-38 (2007).
[CrossRef]

Fujitsu Sci. Tech. J. (1)

K. Suzuki, “Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions,” Fujitsu Sci. Tech. J. 39, 138-149 (2003).

IEEE Trans. Electron Devices (2)

K. K. Bourdelle, S. Chaudhry, and J. Chu, “The effect of triple well implant dose on performance of NMOS transistors,” IEEE Trans. Electron Devices 49, 521-524 (2002).
[CrossRef]

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorous-, and boron-doped silicon,” IEEE Trans. Electron Devices ED-30, 764-769 (1983).
[CrossRef]

J. Appl. Phys. (6)

T. Som, O. P. Sinha, J. Ghatak, B. Satpati, and D. Kanjilal, “MeV heavy ion induced recrystallization of buried silicon nitride layer: role of energy loss processes,” J. Appl. Phys. 101, 034912 (2007).
[CrossRef]

S. Intarasiri, L. D. Yu, S. Singkarat, A. Hallén, J. Lu, M. Ottoson, J. Jensen, and G. Possnert, “Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide,” J. Appl. Phys. 101, 084311 (2007).
[CrossRef]

C. Dupré, T. Ernst, J.-M. Hartmann, F. Andrieu, J.-P. Barnes, P. Rivallin, O. Faynot, S. Deleonibus, P. F. Fazzini, A. Claverie, S. Cristoloveanu, G. Ghibaudo, and F. Cristiano, “Carrier mobility degradation due to high dose implantation in ultrathin unstrained and strained silicon-on-insulator films,” J. Appl. Phys. 102, 104505 (2007).
[CrossRef]

K. K. Bourdelle, D. J. Eaglesham, D. C. Jacobson, and J. M. Poate, “The effect of as-implanted damage on the microstructure of threading dislocations in MeV implanted silicon,” J. Appl. Phys. 86, 1221-1225 (1999).
[CrossRef]

S. Ruffel, I. V. Mitchell, and P. Simpson, “Annealing behavior of low-energy ion-implanted phosphorous in silicon,” J. Appl. Phys. 97, 123518 (2005).
[CrossRef]

M. Delfino and R. R. Razouk, “A four-phase complex refractive index model of ion-implantation damage: optical constants of phosphorus implants in silicon,” J. Appl. Phys. 52, 386-392 (1981).
[CrossRef]

J. Electrochem. Soc. (4)

W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant relationship for phosphorous-doped silicon,” J. Electrochem. Soc. 127, 1807-1812 (1980).
[CrossRef]

D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, “Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy,” J. Electrochem. Soc. 143, 3019-3032 (1996).
[CrossRef]

N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, “Double SIMOX structures formed by sequential high energy oxygen implantation into silicon,” J. Electrochem. Soc. 147, 354-362 (2000).
[CrossRef]

C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, “Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy,” J. Electrochem. Soc. 148, G704-G716 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

R. M. De Oliveira, M. Dalponte, and H. Boudinov, “Electrical activation of arsenic implanted in silicon on insulator (SOI),” J. Phys. D 40, 5227-5231 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (2)

J. Meijer, B. Burchard, K. Ivanova, B. E. Volland, I. W. Rangelow, M. Rüb, and G. Deboy, “High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes,” J. Vac. Sci. Technol. B 22, 152-157 (2004).
[CrossRef]

A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, “P implantation doping of Ge: diffusion, activation, and recrystallization,” J. Vac. Sci. Technol. B 24, 494-498 (2006).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

H. Tsuya, “Present status and prospect of Si wafers for ultra large scale integration,” Jpn. J. Appl. Phys., Part 1 43, 4055-4067 (2004).
[CrossRef]

Microelectron. Eng. (1)

L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, “Simulation of high energy implantation profiles in crystalline silicon,” Microelectron. Eng. 19, 495-498 (1992).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (4)

D. Pramanik and A. N. Saxena, “MeV implantation for VLSI,” Nucl. Instrum. Methods Phys. Res. B 10/11, 493-497 (1985).
[CrossRef]

W. Yuguang, Z. Tonghe, and L. Yan, “Phosphorous electrical activation in high energy P and high flux silicon implanted silicon,” Nucl. Instrum. Methods Phys. Res. B 135, 570-673 (1998).
[CrossRef]

R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, “Ultra shallow junction formation and dopant activation study of Ga implanted Si,” Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005).
[CrossRef]

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004).
[CrossRef]

Phys. Rev. B (1)

S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, “Thermal activation of carriers from a metallic impurity band,” Phys. Rev. B 48, 11394-11397 (1993).
[CrossRef]

Radiat. Eff. Defects Solids (1)

G. K. Hubler, P. R. Malmberg, C. N. Waddell, W. G. Spitzer, and J. E. Fredrickson, “Electrical and structural characterization of implantation doped silicon by infrared reflection,” Radiat. Eff. Defects Solids 60, 35-47 (1982).
[CrossRef]

Semicond. Sci. Technol. (1)

E. Lioudakis, C. Christofides, and A. Othonos, “Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature,” Semicond. Sci. Technol. 21, 1059-1063 (2006).
[CrossRef]

Other (6)

M. D. Giles, “Ion implantation,” in VLSI Technology, S.M.Sze, ed. (Mc Graw Hill, 1988), pp. 327-374.

J. F. Ziegler, Handbook of Ion Implantation Technology (North-Holland, 1992).

S. Voldman, L. Lanzerotti, W. Morris, and L. Rubin, “The influence of heavily doped buried layer implants on electrostatic discharge (ESD), latchup, and a silicon germanium heterojunction bipolar transistor in a BiCMOS SiGe technology,” in Proceedings of the 42nd Annual Reliability Physics Symposium (IEEE International, 2004) 143-151.

A. T. Fiory, S. G. Chawda, S. Madishetty, N. M. Ravindra, A. Agarwal, K. K. Bourdelle, J. M. McKinley, H. J. L. Gossmann, and S. P. McCoy, “Boron and phosphorous dopant diffusion in crystalline Si by rapid thermal activation,” in Proceedings of the 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, B.L.Sopori, ed. (2001), pp. 271-278.

R. B. Fair, “Diffusion and ion implantation in silicon,” in Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), G.E.McGuire, ed. (Noyes Publications, 1988), pp. 455-540.

C. C. Katsidis, “Study of the effects of ion implantation on the optical, structural and electrical properties of silicon and SIMOX structures using fast Fourier transform spectroscopy in the infrared,” Ph.D. dissertation (Aristotle University of Thessaloniki, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Model of the as-implanted Si refractive index profile. R 1 : damaged (partially disordered) Si; R 3 : amorphous Si; R 5 : Si substrate. The transition regions, R 2 and R 3 , are modeled as half-Gaussians.

Fig. 2
Fig. 2

Model of the annealed-doped Si refractive index profile. Plots of the real, n, and imaginary, k, parts of the refractive index in the recrystallized (subscript R) region and the Si substrate (subscript S). The carrier concentration profile is a Pearson IV distribution.

Fig. 3
Fig. 3

Calculated best-fit (solid curve) and experimental (symbols) data of 1.2 MeV P + as-implanted Si. The dotted curve was calculated considering the interfaces of the buried amorphous layer being abrupt.

Fig. 4
Fig. 4

Best-fit refractive index profile of as-implanted Si compared with the three-layer model and the damage distribution calculated by SRIM.

Fig. 5
Fig. 5

Changes in the standard deviation of the half-Gaussian simulating the transition region between the damaged Si and the buried amorphous layer.

Fig. 6
Fig. 6

Calculated reflectance spectra corresponding to the refractive index profiles of Fig. 5.

Fig. 7
Fig. 7

Changes in the standard deviation of the half-Gaussian simulating the transition region between the buried amorphous layer and the Si substrate.

Fig. 8
Fig. 8

Calculated reflectance spectra corresponding to the refractive index profiles of Fig. 7.

Fig. 9
Fig. 9

Calculated (solid curve) and experimental (symbols) reflectance data of 1.2 MeV P + implanted Si after annealing. The short-dashed curve corresponds to the Pearson IV carrier distribution that fits the experimental spreading resistance profile.

Fig. 10
Fig. 10

Concentration profiles obtained by FTIR spectroscopy (dashed curve) and spreading resistance profilometry (solid curve) measurements. The PIV2 distribution is a Pearson IV type distribution that fits the concentration profile obtained by SRP.

Fig. 11
Fig. 11

Comparison between the outputs of SRIM (as-implanted state) and the SR concentration profile (annealed state).

Fig. 12
Fig. 12

Refractive index profiles after annealing calculated at three different wavenumbers to reveal dispersion.

Fig. 13
Fig. 13

Spectroscopically derived mobility depth profile (solid curve) and the corresponding carrier concentration depth profile (dashed curve). The level of the average mobility (dotted line) is also shown for comparison.

Fig. 14
Fig. 14

Free carrier damping profile derived from the mobility data of Fig. 13 using Eq. (11b).

Fig. 15
Fig. 15

Calculated reflectance data considering the mobility: (i) variable, (ii) a constant equal to the minimum value of μ ( x ) , and (iii) a constant equal to the average value of μ ( x ) according to Eq. (15).

Fig. 16
Fig. 16

Influence of the free carrier damping, γ p , on the infrared reflectance spectra of annealed-doped Si.

Fig. 17
Fig. 17

Influence of the peak carrier concentration value, N C max , on the infrared reflectance spectra of annealed-doped Si.

Fig. 18
Fig. 18

Refractive index profiles calculated in a peak-concentration range spanning four decades. The profile corresponding to N C max = 10 20 cm 3 is plotted in a different scale.

Tables (2)

Tables Icon

Table 1 Characteristics of the Profile Simulating the Refractive Index of 1.2 MeV P + Implanted Si at a Nominal Dose of 1 × 10 15 cm 2

Tables Icon

Table 2 Peak Position, Straggling, Kurtosis, Skewness and Peak Concentration of the Free Carrier Concentration Profiles After Annealing at 950 ° C for 20 min Obtained by FTIR and SRP Measurements a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ε ̃ = k Δ ε k ω TO k 2 ω TO k 2 ω 2 i γ k ω ω p 2 ω 2 + i γ p ω + A + B Ω 2 ω 2 .
n S , D , A 2 = A S , D , A + B S , D , A ( Ω S , D , A 2 ω 2 ) .
ε ̃ = ω p 2 ω 2 + i γ p ω + A R + B R Ω R 2 ω 2 = ω p 2 ω 2 + i γ p ω + f R ( A S + B S Ω S 2 ω 2 ) .
n ( x ) = n B + ( n P n B ) exp [ ( x R max ) 2 2 Δ R D 2 ] ,
n j ( ω ) = n B ( ω ) + [ n P ( ω ) n B ( ω ) ] exp { [ κ Δ R D + δ x ( j 1 ) ] 2 2 Δ R D 2 } j = 1 , 2 , 3 , , m .
N C j = N C s + ( N C max N C s ) exp { [ κ Δ R p + δ x ( j 1 ) ] 2 2 Δ R p 2 } j = 1 , 2 , 3 , , m .
N C j = N C s + ( N C max N C s ) exp { [ κ Δ R p 1 + δ x ( j 1 ) ] 2 2 Δ R p 1 2 } j = 1 , 2 , 3 , , 40 ,
N C j = N C s + ( N C max N C s ) exp { [ κ Δ R p 2 + δ x ( j 1 ) ] 2 2 Δ R p 2 2 } j = 41 , 42 , , 80 .
N C j = N C s + ( N C max N C s ) f ( j δ x R p ) .
f ( x R p ) = C N [ b 0 + b 1 ( x R p ) + b 2 ( x R p ) 2 ] 1 2 b 2 exp [ b 1 b 2 + b 1 D tan 1 ( 2 b 2 ( x R p ) + b 1 D ) ] ,
C N = [ b 0 + b 1 2 + b 2 b 1 2 ] 1 2 b 2 exp [ b 1 b 2 + b 1 D tan 1 ( 2 b 2 b 1 + b 1 D ) ] .
ω p j 2 = 4 π N C j e 2 m * ,
γ p j = e m * μ j ( N C j ) ,
ε j = n j 2 k j 2 = ω p j 2 ω 2 + γ p j 2 + f R ( A s + B s Ω s 2 ω 2 ) ,
ε j = 2 n j k j = γ p j ω p j 2 ω ( ω 2 + γ p j 2 ) .
n j 2 = [ ε j + ( ε j 2 + ε j 2 ) 1 2 ] 2 ,
k j 2 = [ ε j + ( ε j 2 + ε j 2 ) 1 2 ] 2 .
μ n ( x ) = μ 0 + μ max μ 0 1 + [ N C ( x ) C r ] a μ 1 1 + [ C s N C ( x ) ] β ,
μ ¯ = μ ( x ) N C ( x ) d x N C ( x ) d x ,

Metrics