Abstract

The size of bright structures in traveling-wave light fields is limited by diffraction. This in turn limits a number of technologies, for example, optical trapping. One way to beat the diffraction limit is to use evanescent waves instead of traveling waves. Here we apply a holographic algorithm, direct search, to the shaping of complex evanescent-wave fields. We simulate three-dimensional intensity shaping of evanescent-wave fields using this approach, and we investigate some of its limitations.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The size and separation of extrema can be arbitrarily small, provided their visibility is also arbitrarily small .
  2. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
    [CrossRef]
  3. T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  4. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef]
  6. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, J. P. Samluk, and D. W. Prather, “Perfect lens makes a perfect trap,” Opt. Express 14, 2228-2235 (2006).
    [CrossRef]
  7. L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
    [CrossRef]
  8. L. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006).
  9. R. F. Wallis and G. I. Stegeman, eds., Electromagnetic Surface Excitations (Springer-Verlag, 1986).
  10. O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 59, 1645-1650 (1969).
  11. S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996).
    [CrossRef]
  12. P. S. Ramanujam, “Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester,” Opt. Lett. 28, 2375-2377 (2003).
  13. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
    [CrossRef]
  14. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788-2798 (1987).
  15. A. Tarantola, Inverse Problem Theory (Society for Industrial and Applied Mathematics, 2005).
  16. M. Mazilu and K. Dholakia, “Subwavelength trapping volumes created using negative refraction,” presented at SPIE Optics & Photonics Meeting 2006, San Diego, Calif., August 13-17, 2006.
  17. M. Mazilu and K. Dholakia, “Limits and possibilities in subwavelength imaging using negative refraction,” presented at Photon06, Manchester, UK, September 4-7, 2006.
  18. M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996).
    [CrossRef]
  19. M. Berry, “Faster than Fourier,” in Fundamental Problems in Quantum Theory, J.A.Anandan and J.Safko, eds. (World Scientific, 1994).

2008 (1)

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

2006 (4)

L. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006).

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, J. P. Samluk, and D. W. Prather, “Perfect lens makes a perfect trap,” Opt. Express 14, 2228-2235 (2006).
[CrossRef]

2005 (2)

2003 (1)

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

1996 (2)

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996).
[CrossRef]

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996).
[CrossRef]

1987 (1)

1969 (1)

Allebach, J. P.

Berry, M.

M. Berry, “Faster than Fourier,” in Fundamental Problems in Quantum Theory, J.A.Anandan and J.Safko, eds. (World Scientific, 1994).

Boissel, Y.

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996).
[CrossRef]

Bryngdahl, O.

Cizmár, T.

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Clark, M.

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996).
[CrossRef]

Colomb, T.

Courtial, J.

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Cuche, E.

Depeursinge, C.

Dholakia, K.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

M. Mazilu and K. Dholakia, “Limits and possibilities in subwavelength imaging using negative refraction,” presented at Photon06, Manchester, UK, September 4-7, 2006.

M. Mazilu and K. Dholakia, “Subwavelength trapping volumes created using negative refraction,” presented at SPIE Optics & Photonics Meeting 2006, San Diego, Calif., August 13-17, 2006.

Emery, Y.

Garcés-Chávez, V.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Helseth, L.

L. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006).

Lu, Z.

Magistretti, P. J.

Marquet, P.

Mazilu, M.

M. Mazilu and K. Dholakia, “Limits and possibilities in subwavelength imaging using negative refraction,” presented at Photon06, Manchester, UK, September 4-7, 2006.

M. Mazilu and K. Dholakia, “Subwavelength trapping volumes created using negative refraction,” presented at SPIE Optics & Photonics Meeting 2006, San Diego, Calif., August 13-17, 2006.

Murakowski, J. A.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

Prather, D. W.

Ramanujam, P. S.

Rappaz, B.

Reece, P. J.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

Samluk, J. P.

Schneider, G. J.

Schuetz, C. A.

Seldowitz, M. A.

Serý, M.

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Shi, S.

Siler, M.

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Smith, R.

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996).
[CrossRef]

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Stegeman, G. I.

R. F. Wallis and G. I. Stegeman, eds., Electromagnetic Surface Excitations (Springer-Verlag, 1986).

Sweeney, D. W.

Tarantola, A.

A. Tarantola, Inverse Problem Theory (Society for Industrial and Applied Mathematics, 2005).

Thomson, L. C.

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Vohnsen, B.

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996).
[CrossRef]

Wallis, R. F.

R. F. Wallis and G. I. Stegeman, eds., Electromagnetic Surface Excitations (Springer-Verlag, 1986).

Whyte, G.

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Yao, E.

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Zemánek, P.

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

New J. Phys. (1)

L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008).
[CrossRef]

Opt. Commun. (2)

L. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006).

M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996).
[CrossRef]

Other (6)

The size and separation of extrema can be arbitrarily small, provided their visibility is also arbitrarily small .

M. Berry, “Faster than Fourier,” in Fundamental Problems in Quantum Theory, J.A.Anandan and J.Safko, eds. (World Scientific, 1994).

R. F. Wallis and G. I. Stegeman, eds., Electromagnetic Surface Excitations (Springer-Verlag, 1986).

A. Tarantola, Inverse Problem Theory (Society for Industrial and Applied Mathematics, 2005).

M. Mazilu and K. Dholakia, “Subwavelength trapping volumes created using negative refraction,” presented at SPIE Optics & Photonics Meeting 2006, San Diego, Calif., August 13-17, 2006.

M. Mazilu and K. Dholakia, “Limits and possibilities in subwavelength imaging using negative refraction,” presented at Photon06, Manchester, UK, September 4-7, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics