Abstract

A polarization rotator based on asymmetrical Si nanowires is presented and optimized for high polarization rotation efficiency (almost 100%). The present polarization rotator has a very small conversion length (10μm) and consequently becomes very compact. The analysis of the wavelength dependence shows the present polarization rotator has a broad bandwidth (120nm) for high conversion efficiency (>97%). The tolerance to various fabrication errors is also numerically studied. To compensate the fabrication error, a postcompensation method is introduced by modifying the refractive index of the up-cladding.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17, 946-959 (1981).
    [CrossRef]
  2. T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080-2088 (1998).
    [CrossRef]
  3. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
    [CrossRef]
  4. J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
    [CrossRef]
  5. S. S. A. Obayya, B. M. Azizur, K. T. V. Grattan, and H. A. El-Mikati, “Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides,” IEEE Photon. Technol. Lett. 13, 681-683 (2001).
    [CrossRef]
  6. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, “Improved design of a polarization converter based on semiconductor optical waveguide bends,” Appl. Opt. 40, 5395-5401 (2001).
    [CrossRef]
  7. B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett. 12, 43-45 (2006).
    [CrossRef]
  8. D. M. Beggs, M. Midrio, and T. F. Krauss, “Compact polarization rotators for integrated polarization diversity in InP-based waveguides,” Opt. Lett. 32, 2176-2178 (2007).
    [CrossRef] [PubMed]
  9. M. Fontaine, “Cross-phase modulation phenomena in strongly guiding waveguides: a theoretical approach revised,” J. Opt. Soc. Am. B 15, 964-971 (1998).
    [CrossRef]
  10. Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
    [CrossRef]
  11. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432-445 (2005).
    [CrossRef]
  12. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741-1745 (2006).
    [CrossRef]
  13. C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, “Passive silicon-on-insulator polarization-rotating waveguides,” Opt. Eng. (Bellingham) 45, 044603 (2006).
    [CrossRef]
  14. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
    [CrossRef]
  15. Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
    [CrossRef]
  16. J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
    [CrossRef]
  17. H. El-Refaei and D. Yevick, “Compact InGaAsP/InP polarization rotator,” in Integrated Photonics Research, edited by A.Sawchuk, Vol. 58 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper ITUB5.
  18. V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun. 127, 7-13 (1996).
    [CrossRef]
  19. N. Somasiri, B. M. A. Rahman, and S. S. A. Obayya, “Fabrication tolerance study of a compact passive polarization rotator,” J. Lightwave Technol. 20, 751-757 (2002).
    [CrossRef]
  20. L. Vincetti, A. Cucinotta, S. Selleri, and M. Zoboli, “Three-dimensional finite-element beam propagation method: assessments and developments,” J. Opt. Soc. Am. A 17, 1124-1131 (2000).
    [CrossRef]
  21. D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
    [CrossRef]
  22. T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793-1807 (2003).
    [CrossRef]
  23. B. M. A. Rahman, S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Grattan, and H. A. El-Mikathi, “Design and characterization of compact single-section passive polarization rotator,” J. Lightwave Technol. 19, 512-519 (2001).
    [CrossRef]
  24. N. Somasiri, B. M. A. Rahman, and S. S. A. Obayya, “Fabrication tolerance study of a compact passive polarization rotator,” J. Lightwave Technol. 20, 751-757 (2002).
    [CrossRef]
  25. T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246-1248 (2006).
    [CrossRef]
  26. Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B 18, 1084-1091 (2001).
    [CrossRef]
  27. J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
    [CrossRef]

2007

2006

H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741-1745 (2006).
[CrossRef]

C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, “Passive silicon-on-insulator polarization-rotating waveguides,” Opt. Eng. (Bellingham) 45, 044603 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett. 12, 43-45 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

2005

2004

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

2003

D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
[CrossRef]

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793-1807 (2003).
[CrossRef]

2002

2001

2000

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

L. Vincetti, A. Cucinotta, S. Selleri, and M. Zoboli, “Three-dimensional finite-element beam propagation method: assessments and developments,” J. Opt. Soc. Am. A 17, 1124-1131 (2000).
[CrossRef]

1998

M. Fontaine, “Cross-phase modulation phenomena in strongly guiding waveguides: a theoretical approach revised,” J. Opt. Soc. Am. B 15, 964-971 (1998).
[CrossRef]

T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080-2088 (1998).
[CrossRef]

1997

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

1996

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun. 127, 7-13 (1996).
[CrossRef]

1995

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

1991

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

1981

R. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17, 946-959 (1981).
[CrossRef]

Alferness, R.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

R. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17, 946-959 (1981).
[CrossRef]

Ando, S.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Azizur, B. M.

S. S. A. Obayya, B. M. Azizur, K. T. V. Grattan, and H. A. El-Mikati, “Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides,” IEEE Photon. Technol. Lett. 13, 681-683 (2001).
[CrossRef]

Beggs, D. M.

Brooks, C.

Correia, D.

D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
[CrossRef]

Cucinotta, A.

da Silva, J. P.

D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
[CrossRef]

Dai, D.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Deng, H.

El-Mikathi, H. A.

El-Mikati, H. A.

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, “Improved design of a polarization converter based on semiconductor optical waveguide bends,” Appl. Opt. 40, 5395-5401 (2001).
[CrossRef]

S. S. A. Obayya, B. M. Azizur, K. T. V. Grattan, and H. A. El-Mikati, “Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides,” IEEE Photon. Technol. Lett. 13, 681-683 (2001).
[CrossRef]

El-Refaei, H.

H. El-Refaei and D. Yevick, “Compact InGaAsP/InP polarization rotator,” in Integrated Photonics Research, edited by A.Sawchuk, Vol. 58 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper ITUB5.

Fontaine, M.

M. Fontaine, “Cross-phase modulation phenomena in strongly guiding waveguides: a theoretical approach revised,” J. Opt. Soc. Am. B 15, 964-971 (1998).
[CrossRef]

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Fujisawa, T.

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

Grattan, K. T. V.

Hakimzadeh, F.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

He, S.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Hernandez-Figueroa, H. E.

D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
[CrossRef]

Himeno, A.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Holmes, B. M.

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett. 12, 43-45 (2006).
[CrossRef]

Huan, Z.

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Huang, J. Z.

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Hutchings, D. C.

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett. 12, 43-45 (2006).
[CrossRef]

Inoue, Y.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Jessop, P. E.

Kawachi, M.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Koch, T.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Koren, U.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Koshiba, M.

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

Krauss, T. F.

Li, D.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

Liu, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Lu, T.

Matsuo, S.

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B 18, 1084-1091 (2001).
[CrossRef]

Midrio, M.

Miller, B. I.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Misawa, H.

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B 18, 1084-1091 (2001).
[CrossRef]

Mizeikis, V.

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

Nagy, G.

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Obayya, S. S. A.

Ono, T.

T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080-2088 (1998).
[CrossRef]

Oron, M.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Osgood, R. M.

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Pedersen, J. W.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

Rahman, B. M. A.

Rajarajan, M.

Sawada, T.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Scarmozzino, R.

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Selleri, S.

Shani, Y.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Somasiri, N.

Steel, J.

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Steel, M. J.

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

Sun, H.-B.

Takahashi, H.

Y. Inoue, H. Takahashi, S. Ando, T. Sawada, A. Himeno, and M. Kawachi, “Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate,” J. Lightwave Technol. 15, 1947-1957 (1997).
[CrossRef]

Tarr, G.

C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, “Passive silicon-on-insulator polarization-rotating waveguides,” Opt. Eng. (Bellingham) 45, 044603 (2006).
[CrossRef]

Tzolov, V. P.

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun. 127, 7-13 (1996).
[CrossRef]

van Brug, H.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

van del Tol, J. J. G. M.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

Vincetti, L.

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Xu, Y.

Yano, Y.

T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080-2088 (1998).
[CrossRef]

Ye, J.

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

Ye, J.-Y.

Yevick, D.

T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793-1807 (2003).
[CrossRef]

H. El-Refaei and D. Yevick, “Compact InGaAsP/InP polarization rotator,” in Integrated Photonics Research, edited by A.Sawchuk, Vol. 58 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper ITUB5.

Yevick, D. O.

Young, M. G.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Zoboli, M.

Appl. Opt.

Appl. Phys. Lett.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Electron. Lett.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

IEEE J. Quantum Electron.

R. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17, 946-959 (1981).
[CrossRef]

T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080-2088 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

J. J. G. M. van del Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “A new short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7, 32-34 (1995).
[CrossRef]

S. S. A. Obayya, B. M. Azizur, K. T. V. Grattan, and H. A. El-Mikati, “Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides,” IEEE Photon. Technol. Lett. 13, 681-683 (2001).
[CrossRef]

Z. Huan, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photon. Technol. Lett. 12, 43-45 (2006).
[CrossRef]

J. Z. Huang, R. Scarmozzino, G. Nagy, M. J. Steel, and R. M. Osgood, Jr., “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12, 317-319 (2000).
[CrossRef]

D. Correia, J. P. da Silva, and H. E. Hernandez-Figueroa, “Genetic algorithm and finite-element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915-917 (2003).
[CrossRef]

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

J. Appl. Phys.

J. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5mm wavelength,” J. Appl. Phys. 96, 6934-6936 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Opt. Eng. (Bellingham)

C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, “Passive silicon-on-insulator polarization-rotating waveguides,” Opt. Eng. (Bellingham) 45, 044603 (2006).
[CrossRef]

Opt. Lett.

Other

H. El-Refaei and D. Yevick, “Compact InGaAsP/InP polarization rotator,” in Integrated Photonics Research, edited by A.Sawchuk, Vol. 58 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper ITUB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the present polarization rotator. (b) Cross section of the asymmetrical Si nanowire for the polarization rotation section.

Fig. 2
Fig. 2

Contour map of (a) E x and (b) E y in the polarization rotation section when W e = 240 , H e = 240 nm , and n 3 = 1.46 .

Fig. 3
Fig. 3

Optical axis rotation angle θ as a function of the etching width W e and etching height H e . The index of the cladding layer n 3 = 2.36 .

Fig. 4
Fig. 4

Field distributions of the transverse components of the two lowest order modes for an asymmetrical Si nanowire with W e = 170 , H e = 280 nm , and n 3 = 2.36 ( θ = 45 ° ) .

Fig. 5
Fig. 5

Beat-length L c and different kinds of losses as the etching width W e increases.

Fig. 6
Fig. 6

Wavelength dependence of the PCE.

Fig. 7
Fig. 7

(a) Cross section of the present asymmetrical Si nanowire with a slanted angle Φ. (b) PCE as the slanted angle Φ increases (i.e., fabrication error Δ Φ decreases).

Fig. 8
Fig. 8

PCE as a function of fabrication errors (a) Δ W e and (b) Δ H e .

Fig. 9
Fig. 9

PCE as a function of the etching width error Δ W e for different cladding indices.

Fig. 10
Fig. 10

PCE as a function of the cladding refractive index n 3 for Δ W e = 45 (solid curve) and Δ W e = + 45 nm (dashed curve)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PCE = sin 2 ( 2 θ ) sin 2 ( π L 2 L c ) × 100 % ,
tan ( θ ) = R = Ω n 2 ( x , y ) H x 2 ( x , y ) d x d y Ω n 2 ( x , y ) H y 2 ( x , y ) d x d y ,

Metrics