Abstract

We propose the generation of two-channel time-energy entangled twin photons based on two simultaneous first-order quasi-phase-matched (QPM) spontaneous parametric down-conversion processes in a periodically poled lithium niobate (PPLN) with a monochromatic pump. The theoretical model for the generation of the entangled photons is established, and the analytical solution is obtained in a lossless crystal with an undepleted pump assumption. The generated condition of entangled photons is achieved in terms of the QPM grating period and the pump wavelength. It is shown that two channels of entangled twin photons with different wavelengths can be created by suitably choosing the PPLN grating period once the pump wavelength is fixed, which provides the potential to introduce the wavelength division multiplexed technique into quantum information systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
    [CrossRef] [PubMed]
  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
    [CrossRef]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
    [CrossRef] [PubMed]
  5. J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000).
    [CrossRef] [PubMed]
  6. Y. H. Shih, “Entangled photons,” IEEE J. Sel. Top. Quantum Electron. 9, 1455-1467 (2003).
    [CrossRef]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
    [CrossRef]
  8. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
    [CrossRef]
  9. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530-1532 (2005).
    [CrossRef] [PubMed]
  10. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572-7582 (2005).
    [CrossRef] [PubMed]
  11. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  13. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  14. E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6μm,” Opt. Lett. 27, 2115-2117 (2002).
    [CrossRef]
  15. B.-S. Shi and A. Tomita, “Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate,” J. Opt. Soc. Am. B 21, 2081-2084 (2004).
    [CrossRef]
  16. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
    [CrossRef]
  17. A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004).
    [CrossRef]
  18. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573-3580 (2004).
    [CrossRef] [PubMed]
  19. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A 73, 032326 (2006).
    [CrossRef]
  20. T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
    [CrossRef]
  21. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  22. O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
    [CrossRef]
  23. S. Gao and C. Yang, “Prediction of multichannel polarization-entangled photon pairs in a single periodically poled lithium niobate with a monochromatic pump,” Opt. Lett. 32, 2653-2655 (2007).
    [CrossRef] [PubMed]
  24. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004).
    [CrossRef] [PubMed]
  25. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741-753 (1999).
    [CrossRef]
  26. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  27. In this case, the classical method will be close to the quantum process since one photon is easy to obtain either from the nature or from the pump photon randomly splitting. The number of the initial signal photons does not make any difference in our calculation.
  28. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).
  29. S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
    [CrossRef]
  30. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
    [CrossRef]

2007 (1)

2006 (3)

D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A 73, 032326 (2006).
[CrossRef]

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

2005 (4)

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530-1532 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

2004 (7)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate,” J. Opt. Soc. Am. B 21, 2081-2084 (2004).
[CrossRef]

A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004).
[CrossRef]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573-3580 (2004).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Y. H. Shih, “Entangled photons,” IEEE J. Sel. Top. Quantum Electron. 9, 1455-1467 (2003).
[CrossRef]

2002 (3)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6μm,” Opt. Lett. 27, 2115-2117 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

2001 (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

2000 (2)

J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

1999 (2)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741-753 (1999).
[CrossRef]

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

Albota, M. A.

Alibart, O.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Aspelmeyer, M.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

Assanto, G.

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Bennett, C. H.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

C. Wong, F. N.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Canalias, C.

Chen, D.

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

Chen, J.

Das, B. K.

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).

Dogariu, A.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Elbl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Fan, J.

Feng, S.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Fragemann, A.

Fujimura, M.

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

Fulconis, J.

Gallo, K.

Gao, S.

S. Gao and C. Yang, “Prediction of multichannel polarization-entangled photon pairs in a single periodically poled lithium niobate with a monochromatic pump,” Opt. Lett. 32, 2653-2655 (2007).
[CrossRef] [PubMed]

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

Gao, Y.

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Howell, J. C.

J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Jennewein, T.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

Jennings, G.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Karlsson, A.

König, F.

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Laurell, F.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004).
[CrossRef] [PubMed]

Ljunggren, D.

Marsden, P.

Mason, E. J.

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

Nosaka, T.

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Pelton, M.

Pfister, O.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Pooser, R.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Qin, S.

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

Rarity, J. G.

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086-3094 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Shi, B.-S.

Shih, Y. H.

Y. H. Shih, “Entangled photons,” IEEE J. Sel. Top. Quantum Electron. 9, 1455-1467 (2003).
[CrossRef]

St. J. Russell, P.

Suhara, T.

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Tengner, M.

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Tomita, A.

Tsuchida, H.

A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Wadsworth, W. J.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Wang, L. J.

Weihs, G.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

Windeler, R. S.

Wong, F. N. C.

Xie, D.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Yang, C.

S. Gao and C. Yang, “Prediction of multichannel polarization-entangled photon pairs in a single periodically poled lithium niobate with a monochromatic pump,” Opt. Lett. 32, 2653-2655 (2007).
[CrossRef] [PubMed]

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

Yeazell, J. A.

J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000).
[CrossRef] [PubMed]

Yoshizawa, A.

A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. Yoshizawa and H. Tsuchida, “Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer,” Appl. Phys. Lett. 85, 2457-2459 (2004).
[CrossRef]

Electron. Lett. (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550nm using two PPLN waveguides,” Electron. Lett. 39, 621-622 (2003).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Y. H. Shih, “Entangled photons,” IEEE J. Sel. Top. Quantum Electron. 9, 1455-1467 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

T. Nosaka, B. K. Das, M. Fujimura, and T. Suhara, “Cross-polarized twin photon generation device using quasi-phase matched LiNbO3 waveguide,” IEEE Photon. Technol. Lett. 18, 124-126 (2006).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. Gao, C. Yang, D. Chen, S. Qin, and Y. Gao, “Bandwidth enhancement methods of telecom-region entangled twin photons via quasi-phase-matched spontaneous parametric down-conversion,” J. Nonlinear Opt. Phys. Mater. 15, 513-521 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230-238 (2005).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (5)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A 73, 032326 (2006).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302(R) (2004).
[CrossRef]

Phys. Rev. Lett. (4)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[CrossRef] [PubMed]

J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000).
[CrossRef] [PubMed]

Other (2)

In this case, the classical method will be close to the quantum process since one photon is easy to obtain either from the nature or from the pump photon randomly splitting. The number of the initial signal photons does not make any difference in our calculation.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase-matched signal and idler photon wavelengths as functions of the QPM grating period with a pump at 0.85 μ m . In the left region of position (I), only one channel of entangled twin photons can be generated, while in the region between positions (I) and (II), two channels of entangled twin photons can be generated.

Fig. 2
Fig. 2

Distribution of the feasible number of the entangled twin-photon channels in the lithium niobate transparent window, from 0.5 to 5 μ m , in terms of the QPM grating period and the pump wavelength. The inset shows the enlarged observation of the available region for the two-channel photon generation.

Fig. 3
Fig. 3

Phase mismatches in the transparent wavelength region for the PPLN crystals with QPM grating periods of 22.7 and 23.3 μ m , respectively, where the pump wavelength is selected as 0.85 μ m . There is one couple of perfectly phase-matched wavelengths in the curve for 22.7 μ m while there are two couples of perfectly phase-matched wavelengths for 23.3 μ m .

Fig. 4
Fig. 4

Photon amount versus the wavelength with a pump at 0.85 μ m . Generation of (a) one and (b) twin photons with two channels of entangled twin photons with QPM grating periods of 22.7 and 23.3 μ m , respectively.

Fig. 5
Fig. 5

Influence of the crystal loss on the generation of entangled twin photons, where the photon amounts for the loss and lossless cases are simulated versus the wavelength when the pump is at 0.85 μ m and the QPM grating period is 23.3 μ m with a loss of 0.3 dB cm .

Fig. 6
Fig. 6

(a) Nonlinear parameter of the SPDC process and (b) the corresponding upper limit photon amount as functions of the wavelength; (c) shows the exponential relation between the upper limit photon amount and the nonlinear parameter.

Fig. 7
Fig. 7

Generation of one channel of nondegenerate and one channel of degenerate twin photons with a QPM grating period of 22.89 μ m , which is the critical value between the one-channel and two-channel regions. Here the pump is fixed at 0.85 μ m . The inset shows the broadband property of the degenerate twin photons, whose bandwidth is as broad as 146 nm .

Fig. 8
Fig. 8

Influence of the QPM grating period fluctuation on the generation of entangled twin photons, where the photon amount is simulated as a function of the wavelength with a pump at 0.85 μ m and a QPM grating period and fluctuation of 22.89 and 0.01 μ m , respectively.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d E p d x = j 2 π d eff c n p λ p E s E i exp ( j Δ k x ) α p 2 E p ,
d E s d x = j 2 π d eff c n s λ s E p E i * exp ( j Δ k x ) α s 2 E s ,
d E i d x = j 2 π d eff c n i λ i E p E s * exp ( j Δ k x ) α i 2 E i ,
Δ k = 2 π ( n p λ p n s λ s n i λ i ) 2 π Λ ,
E m ( x ) = 2 P m ( x ) ε 0 c n m A eff exp [ j ϕ m ( x ) ] , ( m = p , s , or i ) .
A eff = m = p , s , i ( f m ( y , z ) 2 d y d z ) 1 d 33 d ( y , z ) m = p , s , i f m ( y , z ) d y d z ,
d P p d x = 4 π d eff λ p 2 ε 0 c n p n s n i A eff P p P s P i sin θ α p P p ,
d P s d x = 4 π d eff λ s 2 ε 0 c n p n s n i A eff P p P s P i sin θ α s P s ,
d P i d x = 4 π d eff λ i 2 ε 0 c n p n s n i A eff P p P s P i sin θ α i P i ,
d θ d x = Δ k 2 π d eff 2 ε 0 c n p n s n i A eff ( 1 λ s P p P i P s + 1 λ i P p P s P i 1 λ p P s P i P p ) cos θ .
θ ( x ) = Δ k x + ϕ s ( x ) + ϕ i ( x ) ϕ p ( x ) ,
P p = P p 0 exp ( α p x ) .
P m ( x ) = h c λ m N m ( x ) , ( m = s or i ) .
d N d x = κ 0 P p N sin θ α N ,
d θ d x = Δ k κ 0 P p cos θ ,
κ 0 = 4 π d eff 2 ε 0 c n p n s n i λ s λ i A eff .
d N d x = κ N sin θ ,
d θ d x = Δ k κ cos θ .
N ( L ) = { N 0 ( Δ k = κ ) N 0 Δ k 2 κ 2 cosh ( L κ 2 Δ k 2 ) κ κ 2 Δ k 2 sinh ( L κ 2 Δ k 2 ) Δ k 2 κ 2 ( Δ k κ ) .
N max = N ( L ) Δ k = 0 = N 0 exp ( κ L ) .

Metrics