Abstract

We report on an ultralow-threshold Raman laser based on a CaF2 whispering-gallery-mode resonator. The laser is demonstrated to have a conversion efficiency above 60%. The observed low lasing threshold is made possible by the ultrahigh optical quality factor of the cavity, which is on the order of Q=1010. The laser is fiber-compatible and is fabricated with a very simple technique. We also demonstrate a single-mode operation of the laser in a multimode cavity as well as a multimode operation of the laser in a single-mode cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501-502 (1928).
    [CrossRef]
  2. G. S. Landsberg and L. I. Mandelshtam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwiss. 16, 557-558 (1928).
    [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes--part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
    [CrossRef]
  5. S. Uetake, R. S. D. Sihombing, and K. Hakuta, “Stimulated Raman scattering of a high-Q liquid-hydrogen droplet in the ultraviolet region,” Opt. Lett. 27, 421-423 (2002).
    [CrossRef]
  6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering-gallery-mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [CrossRef] [PubMed]
  7. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
    [CrossRef]
  9. I. S. Grudinin and L. Maleki, “Ultralow-threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 166-168 (2007).
    [CrossRef]
  10. I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390-3395 (2007).
    [CrossRef] [PubMed]
  11. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [CrossRef]
  12. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313-1315 (2006).
    [CrossRef] [PubMed]
  13. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723-725 (1999).
    [CrossRef]
  14. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
    [CrossRef]
  15. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147-154 (1999).
    [CrossRef]
  16. D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering-gallery-modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177-188 (1993).
    [CrossRef]
  17. A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclassical Opt. 5, 272-278 (2003).
    [CrossRef]
  18. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324-1335 (2007).
    [CrossRef]

2007

2006

A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett. 31, 1313-1315 (2006).
[CrossRef] [PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes--part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[CrossRef]

2004

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering-gallery-mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

2003

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclassical Opt. 5, 272-278 (2003).
[CrossRef]

2002

2001

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

1999

1993

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering-gallery-modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177-188 (1993).
[CrossRef]

1928

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501-502 (1928).
[CrossRef]

G. S. Landsberg and L. I. Mandelshtam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwiss. 16, 557-558 (1928).
[CrossRef]

Am. J. Phys.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

IEE Proc.-J: Optoelectron.

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering-gallery-modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177-188 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes--part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219-1228 (2004).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt.

A. B. Matsko, A. A. Savchenkov, R. J. Letargad, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B: Quantum Semiclassical Opt. 5, 272-278 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501-502 (1928).
[CrossRef]

Naturwiss.

G. S. Landsberg and L. I. Mandelshtam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwiss. 16, 557-558 (1928).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[CrossRef]

Phys. Rev. Lett.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering-gallery-mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Angle-polished fiber coupler. Single-mode fiber is polished at an angle, which was computed to optimize coupling to a 5 mm CaF 2 disk. An approximate ray path is shown with a white arrow. (b) Shadow photograph of a CaF 2 resonator. The white circle shows that the radius of curvature of the disk in the WGM localization area is 100 μ m .

Fig. 2
Fig. 2

Setup diagram. A PDH locking technique is used to stabilize the power in a cavity; A and B denote input and output angle-polished fiber couplers.

Fig. 3
Fig. 3

Optical power from coupler A (channel 2), B (channel 1) recorded with the photodetectors and the error signal.

Fig. 4
Fig. 4

Spectra of input and output power as recorded by the coupler B and the fiber connected to output 4 of the port. See Fig. 2 for details.

Fig. 5
Fig. 5

Optical power spectrum of a lasing Stokes component on (a) log-linear and (b) linear scales. Spectra were recorded for two different pumping WGMs. Optical power is not calibrated.

Fig. 6
Fig. 6

(a) Pump and (b) Stokes spectra for the single-mode WGMR. Resolution is 0.01 nm ; pump power is 2.4 mW . Approximately 40 lasing modes were observed above the noise level.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P t h = π 2 n 2 ξ g c Q S Q P V m λ P λ S .

Metrics