Abstract

By coupling femtosecond laser pulses at a wavelength of 0.8μm in high-delta microstructure fiber, efficient blueshifted radiation with a central wavelength near 0.4μm was observed. The blue light can take 15% of output power. The mechanism for its generation is analyzed to be a degenerate parametric process 2ωp=ωs+ωi, where the frequency of the signal light ωs is nearly twice the pump frequency ωp, and the frequency of the idler light ωi can lie in the terahertz region.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181-184 (2001).
    [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  4. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  6. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26, 1158-1160 (2001).
    [CrossRef]
  7. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567-2576 (2003).
    [CrossRef] [PubMed]
  8. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Spatial-temporal structure of the femtosecond third harmonic generation in photonic-crystal fibers,” Opt. Express 15, 11301-11312 (2007).
    [CrossRef] [PubMed]
  9. A. B. Fedotov, I. Bugar, D. A. Sidorov-Biryukov, E. E. Serebryannikov, D. Chorvatjr, M. Scalora, D. Chorvat, and A. M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313-317 (2003).
    [CrossRef]
  10. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729-3736 (2007).
    [CrossRef] [PubMed]
  11. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  12. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher order dispersion,” Opt. Lett. 29, 2411-2413 (2004).
    [CrossRef] [PubMed]
  13. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  14. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  15. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 125-135 (2004).
    [CrossRef]
  16. S. Konorov, A. Ivanov, D. Ivanov, M. Alfimov, and A. Zheltikov, “Ultrafast photonic-crystal fiber light flash for streak-camera fluorescence measurements,” Opt. Express 13, 5682-5688 (2005).
    [CrossRef] [PubMed]
  17. A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
    [CrossRef]
  18. A. A. Ivanov, D. A. Sidorov-Biryukov, A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Wavelength-tunable parametric third-harmonic generation in a photonic-crystal fiber,” J. Opt. Soc. Am. B 24, 571-575 (2007).
    [CrossRef]
  19. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910-918 (2003).
    [CrossRef] [PubMed]
  20. K. Suizu and K. Kawase, “Terahertz-wave generation in conventional optical fiber,” Opt. Lett. 32, 2990-2992 (2007).
    [CrossRef] [PubMed]
  21. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  23. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel'skii, V. S. Shevandin, and Yu. N. Kondrat'ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber,” Opt. Lett. 28, 1948-1950 (2003).
    [CrossRef] [PubMed]

2007 (5)

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729-3736 (2007).
[CrossRef] [PubMed]

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

A. A. Ivanov, D. A. Sidorov-Biryukov, A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Wavelength-tunable parametric third-harmonic generation in a photonic-crystal fiber,” J. Opt. Soc. Am. B 24, 571-575 (2007).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Spatial-temporal structure of the femtosecond third harmonic generation in photonic-crystal fibers,” Opt. Express 15, 11301-11312 (2007).
[CrossRef] [PubMed]

K. Suizu and K. Kawase, “Terahertz-wave generation in conventional optical fiber,” Opt. Lett. 32, 2990-2992 (2007).
[CrossRef] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

2005 (3)

2004 (2)

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher order dispersion,” Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 125-135 (2004).
[CrossRef]

2003 (4)

2002 (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

2001 (2)

F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26, 1158-1160 (2001).
[CrossRef]

B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

2000 (2)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Appl. Phys. B (2)

B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

A. B. Fedotov, I. Bugar, D. A. Sidorov-Biryukov, E. E. Serebryannikov, D. Chorvatjr, M. Scalora, D. Chorvat, and A. M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313-317 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (7)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Spatial-temporal structure of the femtosecond third harmonic generation in photonic-crystal fibers,” Opt. Express 15, 11301-11312 (2007).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910-918 (2003).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567-2576 (2003).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005).
[CrossRef] [PubMed]

S. Konorov, A. Ivanov, D. Ivanov, M. Alfimov, and A. Zheltikov, “Ultrafast photonic-crystal fiber light flash for streak-camera fluorescence measurements,” Opt. Express 13, 5682-5688 (2005).
[CrossRef] [PubMed]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express 15, 3729-3736 (2007).
[CrossRef] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 125-135 (2004).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov, I. V. Fedotov, A. V. Mitrofanov, A. A. Ivanov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber,” Phys. Rev. E 75, 016614 (2007).
[CrossRef]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup; M.O., micro-objective; XYZ, three-dimensional translation stage; and O.S.A., optical spectrum analyzer. (b) Group-velocity dispersion of the two orthogonal FMs (M1, M2) in the microchannel waveguide. Insets: mode intensity and the polarization distribution of the two orthogonal FMs (left) and the SEM image of the fiber (right).

Fig. 2
Fig. 2

Typical spectra of the pump laser beam and the output beam from a 60 cm fiber. Peak power of the input laser pulse was 2.0 kW . Insets 1–4 are annotated in the text.

Fig. 3
Fig. 3

Dependence of the output optical spectra on the central wavelength of the pump laser pulses. Central wavelength of the input laser pulses are (a) 781, (b) 786, and (c) 798 nm .

Fig. 4
Fig. 4

Dependence of the output optical spectra on the polarization orientation of the pump field. Pump field is polarized at (a) 0 ° , (b) 45 ° , and (c) 90 ° with respect to a selected orientation in the experiment.

Fig. 5
Fig. 5

Dependence of the output optical spectra on the average power of the pump laser pulses. Pump average power is (a) 150 mW , (b) 200 mW , and (c) 300 mW .

Fig. 6
Fig. 6

Spectra of blueshifted radiation and other output signals in the 750 850 nm range, which is chosen from Fig. 5c for clearer insight.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ k = β ( ω d ) β ( ω s ) ( ω d ω s ) u g γ P 0 = 0 .
ω THz = ± ( ω 1 ω 2 ω 3 ) ,

Metrics