Abstract

We have proposed a kind of one-dimensional photonic heterostructure for efficient all-optical dual-channel switches, logic gates, half-adder, and half-subtracter, based on the combined usage of two high-quality and one low-quality resonant modes with their electric fields strongly enhanced in the same defect regions. By exciting the low-quality modes with a low-intensity pump beam, one can efficiently shift the spectral positions of two high-quality modes and thus simultaneously control the propagation of signals at two frequency channels. For an AlGaAsSiO2 heterostructure with two GaAs defect regions, the peak pump intensity can be lower than 6.2mWmm2. When the frequency of the signal light is properly set relative to the two high-quality modes, its propagation can be logically controlled by pump beams with low intensity on the order of 10mWmm2. Moreover, the frequency interval between the two high-quality modes and that between the high- and low-quality modes are adjustable in a wide range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106 (2005).
    [CrossRef]
  4. A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602 (2001).
    [CrossRef]
  5. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
    [CrossRef]
  6. G. Q. Liang, P. Han, and H. Z. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192-194 (2004).
    [CrossRef] [PubMed]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  8. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368-1371 (1994).
    [CrossRef] [PubMed]
  9. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017-2019 (1996).
    [CrossRef] [PubMed]
  10. A. Hache and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77, 4089-4091 (2000).
    [CrossRef]
  11. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589-2595 (1997).
    [CrossRef]
  12. S. Lan, S. Nishikawa, and O. Wade, “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett. 78, 2101-2103 (2001).
    [CrossRef]
  13. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2608 (2003).
    [CrossRef] [PubMed]
  14. F. Cuesta-Soto, A. Martínez, J. Blasco, and J. Martí, “Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring-resonators,” Opt. Express 15, 2323-2335 (2007).
    [CrossRef] [PubMed]
  15. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
    [CrossRef]
  16. H. P. Tian, J. P. Tian, and Y. F. Ji, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
    [CrossRef]
  17. J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
    [CrossRef] [PubMed]
  18. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102 (2002).
    [CrossRef]
  19. X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett. 83, 2518-2520 (2003).
    [CrossRef]
  20. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1882 (2004).
    [CrossRef]
  21. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74-76 (2002).
    [CrossRef]
  22. S. Mikroulis, H. Simos, E. Roditi, A. Chipouras, and D. Syvridis, “40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator,” IEEE Photon. Technol. Lett. 24, 1159-1164 (2006).
  23. S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287-1289 (2006).
    [CrossRef]
  24. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
    [CrossRef]
  25. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
    [CrossRef]
  26. H. Zou, G. Q. Liang, and H. Z. Wang, “Enhancing all-optical switching by localizing the control and signal light fields in the same defect region,” J. Opt. Soc. Am. B 24, 2141-2146 (2007).
    [CrossRef]
  27. M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structure,” J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
    [CrossRef]
  28. H. A. Macleod, Thin Film Optical Filters (IOP, 2001).
    [CrossRef]
  29. T. Hattori, N. Tsurumachi, and H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 14, 348-355 (1997).
    [CrossRef]
  30. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376-2378 (1998).
    [CrossRef]
  31. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446-2449 (1986).
    [CrossRef] [PubMed]

2007 (7)

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

H. P. Tian, J. P. Tian, and Y. F. Ji, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

F. Cuesta-Soto, A. Martínez, J. Blasco, and J. Martí, “Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring-resonators,” Opt. Express 15, 2323-2335 (2007).
[CrossRef] [PubMed]

H. Zou, G. Q. Liang, and H. Z. Wang, “Enhancing all-optical switching by localizing the control and signal light fields in the same defect region,” J. Opt. Soc. Am. B 24, 2141-2146 (2007).
[CrossRef]

2006 (2)

S. Mikroulis, H. Simos, E. Roditi, A. Chipouras, and D. Syvridis, “40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator,” IEEE Photon. Technol. Lett. 24, 1159-1164 (2006).

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

2005 (1)

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106 (2005).
[CrossRef]

2004 (2)

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1882 (2004).
[CrossRef]

G. Q. Liang, P. Han, and H. Z. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192-194 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett. 83, 2518-2520 (2003).
[CrossRef]

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2608 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102 (2002).
[CrossRef]

2001 (3)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602 (2001).
[CrossRef]

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structure,” J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
[CrossRef]

S. Lan, S. Nishikawa, and O. Wade, “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett. 78, 2101-2103 (2001).
[CrossRef]

2000 (2)

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

A. Hache and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

1998 (1)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

1997 (2)

1996 (1)

1994 (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1986 (1)

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446-2449 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106 (2005).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

A. Hache and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77, 4089-4091 (2000).
[CrossRef]

S. Lan, S. Nishikawa, and O. Wade, “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett. 78, 2101-2103 (2001).
[CrossRef]

X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett. 83, 2518-2520 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1882 (2004).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

Electron. Lett. (2)

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

S. Mikroulis, H. Simos, E. Roditi, A. Chipouras, and D. Syvridis, “40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator,” IEEE Photon. Technol. Lett. 24, 1159-1164 (2006).

S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287-1289 (2006).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structure,” J. Opt. A, Pure Appl. Opt. 3, S184-S189 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

H. P. Tian, J. P. Tian, and Y. F. Ji, “Bright and dark solitons in quadratic nonlinear periodic structures and application to an all-optical logic gate,” J. Phys. B 40, 1391-1402 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Phys. Rev. E (1)

A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446-2449 (1986).
[CrossRef] [PubMed]

Other (1)

H. A. Macleod, Thin Film Optical Filters (IOP, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Phase changes on reflection and (b) transmission for CFPCs = ( H L ) 2 ( 2 H ) ( L H ) 2 L ( H L ) 2 ( 2 H ) ( L H ) 2 (solid), B R = [ ( 0.5 L ) ( H L ) 4 ] (dashed) and B S = [ ( 0.5 L ) ( H L ) 8 ] (dotted), assuming the incident and emergent medium is air for simple. The dashed and dotted curves in (a) overlap and look as a dashed–dotted curve.

Fig. 2
Fig. 2

Analysis for Cavity R = n glass A D B R n H and Cavity S = n glass A D B S n H by Smith’s formula, where reflector A = CFPCs = ( H L ) 2 ( 2 H ) ( L H ) 2 L ( H L ) 2 ( 2 H ) ( L H ) 2 , B R = 1.14 [ ( 0.5 L ) ( H L ) 4 ] , B S = 1.14 [ ( 0.5 L ) ( H L ) 6 ] , and D = 1.28 H . (a) Transmission of reflectors A (solid), B R (dashed), and B S (dotted), respectively. (b) Sum of phase changes on reflection from reflectors, i.e., ϕ A + ϕ B R (dashed) and ϕ A + ϕ B S (dotted), and double of the phase thickness of the defect 2 δ D (solid). These three curves intersect at f S = 0.94525 f 0 and f R = 1.0202 f 0 , so the phase condition is simultaneously satisfied at these two frequencies for the two cavities. The dashed and dotted curves in (a) overlap and look as a dashed–dotted curve. Transmissions of (c) Cavity R and (d) Cavity S indicate that f R is fully resonant in Cavity R and f S is highly resonant in Cavity S.

Fig. 3
Fig. 3

(a) Transmission of heterostructure: [ glass CFPCs 1.28 H 1.14 [ ( 0.5 L ) H ( 0.5 L ) ] 9 1.28 H CFPCs glass ] , where CFPCs = ( H L ) 2 ( 2 H ) ( L H ) 2 L ( H L ) 2 ( 2 H ) ( L H ) 2 , insets on left and right are the closeups of the S bands and the R band. Normalized electric field intensity distribution of frequencies (b) f S 1 = 0.94519 f 0 and (c) 1.02015 f 0 in the R band.

Fig. 4
Fig. 4

(a) Transmission of heterostructure: [ glass CFPCs 1.48 H 1.1 [ ( 0.5 L ) H ( 0.5 L ) ] 7 1.48 H CFPCs glass ] , where CFPCs = [ ( H L ) ( 2 H ) ( L H ) L ] 2 ( H L ) ( 2 H ) ( L H ) , insets on the left and right are the closeups of the S bands and the R band. Normalized electric field intensity distribution of frequencies (b) f S 1 = 0.87505 f 0 and (c) 1.0477 f 0 in the R band.

Fig. 5
Fig. 5

(a) Transmission of heterostructure: [ glass CFPCs 1.92 H 0.81 [ ( 0.5 L ) H ( 0.5 L ) ] 7 1.92 H CFPCs glass ] , where CFPCs = [ ( H L ) ( 2 H ) ( L H ) L ] 2 ( H L ) ( 2 H ) ( L H ) , insets on the left and right are the closeups of the S bands and the R band. Normalized electric field intensity distribution of frequencies (b) f S 1 = 0.90358 f 0 , (c) f S 2 = 0.92277 f 0 , and (d) 1.03875 f 0 in the R band.

Fig. 6
Fig. 6

Solid curves in (a) and (b) are the transmission spectra for the S bands and the R band, respectively, of heterostructure: [ glass CFPCs 1 Θ 1.13 [ ( 0.5 L ) H ( 0.5 L ) ] 9 Θ CFPCs 2 glass ] , where Θ = 2.272 H GaAs , CFPCs 1 = ( H L ) 2 ( 2 H ) ( L H ) 2 L ( H L ) 2 ( 2 H ) ( L H L ) , and CFPCs 2 = ( L H L ) ( 2 H ) ( L H ) 2 L ( H L ) 2 ( 2 H ) ( L H ) 2 . Dashed and dotted curves are for Δ n = 4.5 × 10 4 and Δ n = 9 × 10 4 respectively, of the Θ layers. Normalized electric field intensity distribution of frequencies (c) f S 1 = 0.94724 f 0 and (d) 1.02067 f 0 in the R band.

Fig. 7
Fig. 7

Truth table and simulation result of the AND gate. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, and the dotted curve for two pump beams exist simultaneously.

Fig. 8
Fig. 8

Truth tables and simulation results of the NOT and NOR gates. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, the dotted curve for two pump beams exist simultaneously.

Fig. 9
Fig. 9

Truth table and simulation result of the XOR gate. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, and the dotted curve for two pump beams exist simultaneously.

Fig. 10
Fig. 10

Truth table and simulation result of the NAND gate. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, the dotted curve for two pump beams exist simultaneously.

Fig. 11
Fig. 11

Truth table and simulation result of the NXOR gate. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, the dotted curve for two pump beams exist simultaneously.

Fig. 12
Fig. 12

Truth table and simulation result of the OR gate. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, the dotted curve for two pump beams exist simultaneously.

Fig. 13
Fig. 13

Truth table and simulation result of the half-adder. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only one pump beam exists, the dotted curve for two pump beams exist simultaneously.

Fig. 14
Fig. 14

Truth table and simulation result of the half-subtracter. The solid curve is the transmission spectrum for the S bands when no pump beam exists, the dashed curve for only pump 1 exists, the dotted curve for only pump 2 exists, the dashed–dotted curve for two pump beams exist simultaneously.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = T A T B R , S ( 1 R A R B R , S ) 2 + 4 R A R B R , S sin 2 1 2 ( ϕ A + ϕ B R , S 2 δ D ) ,
ϕ A ( f ) + ϕ B R , S ( f ) 2 δ D ( f ) = 2 k π ( k = integer )
T A ( f ) = T B R , S ( f )
glass CFPCs D SPS D CFPCs glass.

Metrics