Abstract

The optimum design of a powerful thin-disk laser implies a compromise between amplified spontaneous emission (ASE), overheating, and the round-trip losses. The power enhancement of a composite thin-disk laser made of an undoped layer bonded over a thin active layer to reduce ASE losses is estimated analytically. Scaling laws for the parameters of a disk laser are suggested for cases both with and without an anti-ASE cap. Predictions of the maximal power achievable for a given laser material are compared to the published experimental data. The anti-ASE cap allows an increase of the maximal output power proportional to the square of the logarithm of the round-trip loss.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Ueda and N. Uehara, “Laser-diode-pumped solid state lasers for gravitational wave antenna,” in Proc. SPIE 1837, 336-345 (1993).
    [CrossRef]
  2. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
    [CrossRef]
  3. C. Li, D. Y. Shen, J. Song, N. S. Kim, and K. Ueda, “Theoretical and experimental investigations of diode-pumped Tm: YAG laser in active mirror configuration,” Opt. Rev. 6, 439-442 (1999).
    [CrossRef]
  4. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101-109 (1999). N. P. Barnes and B. M. Walsh, “Corrections to amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 1100-1100 (1999).
    [CrossRef]
  5. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  6. R. J. Beach, E. C. Honea, C. Bibeau, S. Payne, A. Stephen, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scalable thin-disk laser,” U.S. patent 6,347,109 (12 February 2002).
  7. L. E. Zapata, R. J. Beach, E. C. Honea, and S. A. Payne, “Method for optical pumping of thin disk laser media at high average power,” U.S. patent 6,763,050 (13 July 2004).
  8. K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, “Conceptual design of a laser diode pumped solid state laser system for laser fusion reactor driver,” Jpn. J. Appl. Phys., Part 1 31, 259-273 (1992).
    [CrossRef]
  9. C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75-116 (1996).
    [CrossRef]
  10. E. I. Moses and C. R. Wuest, “The national ignition facility: laser performance and first experiments,” Fusion Sci. Technol. 47, 314-322 (2005).
  11. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwander, R. Paschotta, C. Hönninged, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367-369 (2003).
    [CrossRef] [PubMed]
  12. D. Kouznetsov, J.-F. Bisson, J. Dong, and K. Ueda, “Surface loss limit of the power scaling of a thin disk laser,” J. Opt. Soc. Am. B 23, 1074-1082 (2006).
    [CrossRef]
  13. D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, “High-power single mode solid state laser with a short unstable cavity,” J. Opt. Soc. Am. B 22, 1605-1619 (2005).
    [CrossRef]
  14. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultralow-loss mirror of the parts-in-106 level at 1064nm,” Opt. Lett. 20, 530-532 (1995).
    [CrossRef] [PubMed]
  15. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102-114 (1986).
    [CrossRef]
  16. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [CrossRef]
  17. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970nm diode-pumped Yb:YAG and Yb:Lu:AG lasers,” Appl. Opt. 38, 5149-5153 (1999).
    [CrossRef]
  18. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 1 40, L1277-L1279 (2001).
    [CrossRef]
  19. J. Kawanaka, “We consider HR-coating on the backside, and AR-coating or Brewster-angled incidence on the front side; the scattering is considerably low” (personal communication, 2005).
  20. Q. Liu, M. L. Gong, Y. Y. Pan, and C. Li, “Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling,” Acta Phys. Sin. 53, 2159-2164 (2004).
  21. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).
    [CrossRef]
  22. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
    [CrossRef] [PubMed]
  23. P. Kränkel, J. Johannsen, R. Peters, K. Peterman, and G. Huber, “Continuous wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217-220 (2007).
    [CrossRef]
  24. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
    [CrossRef]
  25. A. Giesen, L. Speiser, R. Peters, C. Kränkel, and K. Peterman, “Thin-disk lasers come of age,” Photonics Spectra 41, 52-58 (2007).
  26. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
    [CrossRef]

2007 (5)

P. Kränkel, J. Johannsen, R. Peters, K. Peterman, and G. Huber, “Continuous wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217-220 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[CrossRef]

A. Giesen, L. Speiser, R. Peters, C. Kränkel, and K. Peterman, “Thin-disk lasers come of age,” Photonics Spectra 41, 52-58 (2007).

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075-7082 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, “High-power single mode solid state laser with a short unstable cavity,” J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[CrossRef]

J. Kawanaka, “We consider HR-coating on the backside, and AR-coating or Brewster-angled incidence on the front side; the scattering is considerably low” (personal communication, 2005).

E. I. Moses and C. R. Wuest, “The national ignition facility: laser performance and first experiments,” Fusion Sci. Technol. 47, 314-322 (2005).

2004 (1)

Q. Liu, M. L. Gong, Y. Y. Pan, and C. Li, “Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling,” Acta Phys. Sin. 53, 2159-2164 (2004).

2003 (1)

2001 (1)

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 1 40, L1277-L1279 (2001).
[CrossRef]

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

1999 (3)

C. Li, D. Y. Shen, J. Song, N. S. Kim, and K. Ueda, “Theoretical and experimental investigations of diode-pumped Tm: YAG laser in active mirror configuration,” Opt. Rev. 6, 439-442 (1999).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101-109 (1999). N. P. Barnes and B. M. Walsh, “Corrections to amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 1100-1100 (1999).
[CrossRef]

T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970nm diode-pumped Yb:YAG and Yb:Lu:AG lasers,” Appl. Opt. 38, 5149-5153 (1999).
[CrossRef]

1996 (1)

C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75-116 (1996).
[CrossRef]

1995 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

1993 (2)

K. Ueda and N. Uehara, “Laser-diode-pumped solid state lasers for gravitational wave antenna,” in Proc. SPIE 1837, 336-345 (1993).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

1992 (1)

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, “Conceptual design of a laser diode pumped solid state laser system for laser fusion reactor driver,” Jpn. J. Appl. Phys., Part 1 31, 259-273 (1992).
[CrossRef]

1986 (1)

Acta Phys. Sin. (1)

Q. Liu, M. L. Gong, Y. Y. Pan, and C. Li, “Edge-pumped composite thin-disk Yb:YAG/YAG laser: design and power scaling,” Acta Phys. Sin. 53, 2159-2164 (2004).

Appl. Opt. (1)

Appl. Phys. B (2)

P. Kränkel, J. Johannsen, R. Peters, K. Peterman, and G. Huber, “Continuous wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87, 217-220 (2007).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[CrossRef]

Fusion Sci. Technol. (1)

E. I. Moses and C. R. Wuest, “The national ignition facility: laser performance and first experiments,” Fusion Sci. Technol. 47, 314-322 (2005).

IEEE J. Quantum Electron. (2)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101-109 (1999). N. P. Barnes and B. M. Walsh, “Corrections to amplified spontaneous emission--application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 1100-1100 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys., Part 1 (2)

K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka, and S. Nakai, “Conceptual design of a laser diode pumped solid state laser system for laser fusion reactor driver,” Jpn. J. Appl. Phys., Part 1 31, 259-273 (1992).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 1 40, L1277-L1279 (2001).
[CrossRef]

Nucl. Fusion (1)

C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75-116 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

C. Li, D. Y. Shen, J. Song, N. S. Kim, and K. Ueda, “Theoretical and experimental investigations of diode-pumped Tm: YAG laser in active mirror configuration,” Opt. Rev. 6, 439-442 (1999).
[CrossRef]

Photonics Spectra (1)

A. Giesen, L. Speiser, R. Peters, C. Kränkel, and K. Peterman, “Thin-disk lasers come of age,” Photonics Spectra 41, 52-58 (2007).

Proc. SPIE (1)

K. Ueda and N. Uehara, “Laser-diode-pumped solid state lasers for gravitational wave antenna,” in Proc. SPIE 1837, 336-345 (1993).
[CrossRef]

Other (4)

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Materials (Cambridge U. Press, 2000).
[CrossRef]

J. Kawanaka, “We consider HR-coating on the backside, and AR-coating or Brewster-angled incidence on the front side; the scattering is considerably low” (personal communication, 2005).

R. J. Beach, E. C. Honea, C. Bibeau, S. Payne, A. Stephen, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scalable thin-disk laser,” U.S. patent 6,347,109 (12 February 2002).

L. E. Zapata, R. J. Beach, E. C. Honea, and S. A. Payne, “Method for optical pumping of thin disk laser media at high average power,” U.S. patent 6,763,050 (13 July 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left: uncovered thin disk laser. Right: disk with the anti-ASE cap. The external coupler is not shown in the figure.

Fig. 2
Fig. 2

Dashed: optimal level of the transverse-trip gain u = 2 for uncovered disk lasers. Solid: transverse-trip gain u optimized for a given pump power versus normalized pump power p at β = 0.1 , 0.01, and 0.001 for the disk with the anti-ASE cap by Eq. (5). Circles show the values corresponding to the maximum output power achievable at each of these β for each of the configurations (with and without the anti-ASE cap). The thin solid line shows Eq. (6) for a disk with the anti-ASE cap at β = 0.001 . (For Yb:YAG, P d 0.5 W .)

Fig. 3
Fig. 3

Thick dashed: optimized round trip gain g versus normalized pump power p = P p P d at β = 0.1 , 0.01, and 0.001 (uncovered disk). Solid: g versus p at the same values of β for the disk with the anti-ASE cap. The thin dashed line at the bottom represents the estimate (16) for the uncovered disk at β = 0.001 . Circles correspond to maxima of normalized output power at a given β. (For Yb:YAG, P d 0.5 W .)

Fig. 4
Fig. 4

Dashed: optimized size L (thin) and thickness h (thick) versus normalized pump power p for β = 0.1 , 0.01, and 0.001 (uncovered disk). Solid: the same for the disk with the anti-ASE cap. (For Yb:YAG, r o 0.1 mm , P d 0.5 W .)

Fig. 5
Fig. 5

Dashed: normalized output power at optimized values of L, h (thick) versus normalized pump p at u = 2 for β = 0.1 , 0.01, and 0.001 (uncovered disk); the maximal power scales up as 1 β 3 . Solid: similar curves for a disk with the anti-ASE cap for the same values of β. Thick circles indicates maxima of the output power. Thin circles for the disk laser with the anti-ASE cap correspond to the leading term of the asymptotic estimates (13, 14). (For Yb:YAG, P d 0.5 W .)

Fig. 6
Fig. 6

Estimates of the upper bound for the round-trip loss β required for the desired output power P s of a thin-disk laser versus s = ( λ s λ p ) ( P s P d ) . Thin solid curve: β = s 1 3 , rough estimate without any coefficients. Thick dashed curve: Eq. (23) for the case without the cap. Thick solid curve: estimate (24) for the disk laser with the anti-ASE cap. Circles correspond to various lasers, and the digit in each circle indicates the row number (last column) in Table 2.

Tables (3)

Tables Icon

Table 1 Example of Optimization for P d = 0.5 W and r o = 0.1 mm

Tables Icon

Table 2 Various Lasers at the β , s Diagram

Tables Icon

Table 3 Notations and Basic Formulas

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

1 τ = 1 τ o + h L exp ( G L ) τ o .
P s = η o ( 1 β g ) ( P p P th ) ,
p = P p P d , s = P s ( η o P d ) , u = G L , g = 2 G h ,
s = ( 1 β g ) ( p p 2 g 3 4 u 3 τ o τ ) .
( u 3 ) 5 e 4 u β 32 u 2 ( 6 u 2 β u e u ( u 3 ) ) = p .
u 1 4 ln p β , g 4 ( β p ) 1 4 ,
L 8 r o ln p β β 1 4 p 3 4 , h 16 r o ln p β β p .
ε = 1 ln ( 3 β ) ,
u 1 ε + 19 6 ε + O ( ε 2 ) ,
g 4 3 β ( 1 + 1 6 ε + O ( ε 2 ) ) 1 ,
L r o 16 ( 3 β ε ) 2 ( 1 + 5 3 ε + O ( ε 2 ) ) 1 ,
h r o 8 ( 3 β ) ( 1 + 11 3 ε + O ( ε 2 ) ) 1 ,
s ( 3 β ) 3 1 256 ε 2 ( 1 + 2 ε + O ( ε 2 ) ) 1 ,
p ( 3 β ) 3 1 32 ε 2 ( 1 + 3 2 ε + O ( ε 2 ) ) 1 .
16 e 2 3 2 β g ( β g ) 4 = β 3 p .
g ( 16 3 e 2 β p ) 1 4 1.2 ( β p ) 1 4 .
L r o 2 e ( β 3 ) 1 4 p 3 4 0.63 r o β 1 4 p 3 4 ,
h r o 2 e ( β 3 p ) 1 2 0.58 r o β 1 2 p 1 2 .
u = 2 , g = 4 3 β ,
L = L max = r o 8 e 2 ( 3 β ) 2 , h = h max = r o 8 e 2 3 β ,
p = p max = 1 8 e 2 ( 3 β ) 3 , s = s max = 1 64 e 2 ( 3 β ) 3 .
s max , cap s max = e 2 4 ε 2 [ 1 + 2 ε + O ( ε 2 ) ] 1 ,
β = 3 4 e 2 3 s 1 3 .
β ( 3 256 s ) 1 3 ( ln ( 256 s ) ) 2 3 .
β = θ ( η o η a η s 1 ) .
P p = η o ( P s P th ) .
P th = ω p τ g L 2 2 σ = G L 2 Q τ o τ .
R L 2 h = P p ,
L 2 h = P p R , L h = 2 u g ,
L = g P p 2 u R , h = g 2 P 4 u 2 R .
P s = η o ( 1 β g ) ( P p P p 2 Q R 2 g 3 4 u 2 τ o τ ) .
s = ( 1 β g ) ( p p 2 e 2 16 g 3 ) .
β g 3 ( 3 g 2 β ) = e 2 16 p ,
τ o τ = 1 + g 2 u e u ,
4 u e u u 3 = g , 2 g 4 p ( 2 e u g + 3 u ) 3 e u g 4 p + 4 g 3 p u + 8 u 3 = β .
p = 4 u 3 g 3 ( e u g + 2 u ) , s = 2 ( g β ) u 3 g 4 ( e u g + 2 u ) .
4 e u u u 3 = g , 2 g ( e u g + 3 u ) 5 e u g + 8 u = β ,
2 u e u ( 3 u 1 ) ( 2 u 1 ) ( u 3 ) = β .
e u = 3 β 1 1 ( 3 u ) ( 1 1 ( 2 u ) ) ( 1 3 u ) ,
u = ln 3 β + ln ( 1 1 3 u ) ln ( 1 1 2 u ) ln ( 1 3 u ) .

Metrics