Abstract

We report the observation of an electric quadrupole transition between the 4s[12]0o and 3d[32]2o states in the spectrum of argon and use it in the first step of a scheme to excite Rydberg states. The initial identification of the transition is based on one-color, two-photon photoionization. A different experiment utilizing two-color, two-photon photoexcitation to Rydberg states confirms the identification. Despite the unavoidable background of one-color, two-photon photoionization, the latter experimental technique makes possible two-photon spectroscopy of Rydberg states using a resonant intermediate state populated by an electric quadrupole transition.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. F. Stebbings and F. B. Dunning, “Autoionization from high-lying 3p5(P1/22)np levels in argon,” Phys. Rev. A 8, 665-667 (1973).
    [CrossRef]
  2. F. B. Dunning and R. F. Stebbings, “Role of autoionization in the near-threshold photoionization of argon and krypton metastable atoms,” Phys. Rev. A 9, 2378-2382 (1974).
    [CrossRef]
  3. A. Muhlpfordt and U. Even, “Autoionizing Rydberg and zero electron kinetic energy states in Ar,” J. Chem. Phys. 103, 4427-4430 (1995).
    [CrossRef]
  4. S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Four-photon excitation of autoionizing states of Ar, Kr, and Xe between the P3/22 and P1/22 ionic limits,” Phys. Rev. A 51, 1097-1109 (1995).
    [CrossRef] [PubMed]
  5. A. Irimia and C. F. Fischer, “Breit-Pauli and Dirac-Hartree-Fock energy levels and transition probabilities in neutral argon,” J. Phys. B 37, 1659-1672 (2004).
    [CrossRef]
  6. T. Peters, T. Halfmann, U. Even, A. Wünnenberg, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, “Experimental and theoretical investigation of even mp1/25np′; autoionizing resonances of rare gas atoms,” J. Phys. B 38, S51-S64 (2005).
    [CrossRef]
  7. Y. Lee, T. Dung, J. Yu, Y. Song, K. Hsu, and K. Lin, “Two-color photoionization of noble gases using laser and VUV synchrotron radiation,” J. Electron Spectrosc. Relat. Phenom. 144, 29-33 (2005).
    [CrossRef]
  8. C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. Circ. (U. S.) 467, Vol. 1 (1971).
  9. Yu. Ralchenko, A. E. Kramida, and J. Reader, “NIST Atomic Spectra Database,” http://physics.nist.gov/PhysRefData/ASD/index.html; see Ar I levels data.
  10. L. Zhu and P. M. Johnson, “Mass analyzed threshold ionization spectroscopy,” J. Chem. Phys. 94, 5769-5771 (1991).
    [CrossRef]
  11. M. L. Keeler, H. Flores-Rueda, J. D. Wright, and T. J. Morgan, “Scaled-energy spectroscopy of argon atoms in an electric field,” J. Phys. B 37, 809-815 (2004).
    [CrossRef]
  12. M. Keeler and T. J. Morgan, “Scaled-energy spectroscopy of the Rydberg-Stark spectrum of helium: influence of exchange on recurrence spectra,” Phys. Rev. Lett. 80, 5726-5729 (1998).
    [CrossRef]
  13. W. L. Wiese, J. W. Brault, K. Danzmann, V. Helbig, and M. Kock, “Unified set of atomic transition probabilities for neutral argon,” Phys. Rev. A 39, 2461-2471 (1989).
    [CrossRef] [PubMed]
  14. M. Pellarin, J.-L. Vialle, M. Carre, J. Lerme, and M. Aymar, “Even parity series of argon Rydberg states studied by fast-beam collinear laser spectroscopy,” J. Phys. B 21, 3833-3849 (1988).
    [CrossRef]
  15. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, 1988).
  16. X. Zhang, J. D. Pitts, R. Nadarajah, and J. L. Knee, “Neutral and cation spectroscopy of fluorene-Arn clusters,” J. Chem. Phys. 107, 8239-8251 (1997).
    [CrossRef]

2005 (2)

T. Peters, T. Halfmann, U. Even, A. Wünnenberg, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, “Experimental and theoretical investigation of even mp1/25np′; autoionizing resonances of rare gas atoms,” J. Phys. B 38, S51-S64 (2005).
[CrossRef]

Y. Lee, T. Dung, J. Yu, Y. Song, K. Hsu, and K. Lin, “Two-color photoionization of noble gases using laser and VUV synchrotron radiation,” J. Electron Spectrosc. Relat. Phenom. 144, 29-33 (2005).
[CrossRef]

2004 (2)

A. Irimia and C. F. Fischer, “Breit-Pauli and Dirac-Hartree-Fock energy levels and transition probabilities in neutral argon,” J. Phys. B 37, 1659-1672 (2004).
[CrossRef]

M. L. Keeler, H. Flores-Rueda, J. D. Wright, and T. J. Morgan, “Scaled-energy spectroscopy of argon atoms in an electric field,” J. Phys. B 37, 809-815 (2004).
[CrossRef]

1998 (1)

M. Keeler and T. J. Morgan, “Scaled-energy spectroscopy of the Rydberg-Stark spectrum of helium: influence of exchange on recurrence spectra,” Phys. Rev. Lett. 80, 5726-5729 (1998).
[CrossRef]

1997 (1)

X. Zhang, J. D. Pitts, R. Nadarajah, and J. L. Knee, “Neutral and cation spectroscopy of fluorene-Arn clusters,” J. Chem. Phys. 107, 8239-8251 (1997).
[CrossRef]

1995 (2)

A. Muhlpfordt and U. Even, “Autoionizing Rydberg and zero electron kinetic energy states in Ar,” J. Chem. Phys. 103, 4427-4430 (1995).
[CrossRef]

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Four-photon excitation of autoionizing states of Ar, Kr, and Xe between the P3/22 and P1/22 ionic limits,” Phys. Rev. A 51, 1097-1109 (1995).
[CrossRef] [PubMed]

1991 (1)

L. Zhu and P. M. Johnson, “Mass analyzed threshold ionization spectroscopy,” J. Chem. Phys. 94, 5769-5771 (1991).
[CrossRef]

1989 (1)

W. L. Wiese, J. W. Brault, K. Danzmann, V. Helbig, and M. Kock, “Unified set of atomic transition probabilities for neutral argon,” Phys. Rev. A 39, 2461-2471 (1989).
[CrossRef] [PubMed]

1988 (1)

M. Pellarin, J.-L. Vialle, M. Carre, J. Lerme, and M. Aymar, “Even parity series of argon Rydberg states studied by fast-beam collinear laser spectroscopy,” J. Phys. B 21, 3833-3849 (1988).
[CrossRef]

1974 (1)

F. B. Dunning and R. F. Stebbings, “Role of autoionization in the near-threshold photoionization of argon and krypton metastable atoms,” Phys. Rev. A 9, 2378-2382 (1974).
[CrossRef]

1973 (1)

R. F. Stebbings and F. B. Dunning, “Autoionization from high-lying 3p5(P1/22)np levels in argon,” Phys. Rev. A 8, 665-667 (1973).
[CrossRef]

1971 (1)

C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. Circ. (U. S.) 467, Vol. 1 (1971).

J. Chem. Phys. (3)

A. Muhlpfordt and U. Even, “Autoionizing Rydberg and zero electron kinetic energy states in Ar,” J. Chem. Phys. 103, 4427-4430 (1995).
[CrossRef]

L. Zhu and P. M. Johnson, “Mass analyzed threshold ionization spectroscopy,” J. Chem. Phys. 94, 5769-5771 (1991).
[CrossRef]

X. Zhang, J. D. Pitts, R. Nadarajah, and J. L. Knee, “Neutral and cation spectroscopy of fluorene-Arn clusters,” J. Chem. Phys. 107, 8239-8251 (1997).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

Y. Lee, T. Dung, J. Yu, Y. Song, K. Hsu, and K. Lin, “Two-color photoionization of noble gases using laser and VUV synchrotron radiation,” J. Electron Spectrosc. Relat. Phenom. 144, 29-33 (2005).
[CrossRef]

J. Phys. B (4)

A. Irimia and C. F. Fischer, “Breit-Pauli and Dirac-Hartree-Fock energy levels and transition probabilities in neutral argon,” J. Phys. B 37, 1659-1672 (2004).
[CrossRef]

T. Peters, T. Halfmann, U. Even, A. Wünnenberg, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, “Experimental and theoretical investigation of even mp1/25np′; autoionizing resonances of rare gas atoms,” J. Phys. B 38, S51-S64 (2005).
[CrossRef]

M. L. Keeler, H. Flores-Rueda, J. D. Wright, and T. J. Morgan, “Scaled-energy spectroscopy of argon atoms in an electric field,” J. Phys. B 37, 809-815 (2004).
[CrossRef]

M. Pellarin, J.-L. Vialle, M. Carre, J. Lerme, and M. Aymar, “Even parity series of argon Rydberg states studied by fast-beam collinear laser spectroscopy,” J. Phys. B 21, 3833-3849 (1988).
[CrossRef]

Natl. Bur. Stand. Circ. (U. S.) (1)

C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. Circ. (U. S.) 467, Vol. 1 (1971).

Phys. Rev. A (4)

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Four-photon excitation of autoionizing states of Ar, Kr, and Xe between the P3/22 and P1/22 ionic limits,” Phys. Rev. A 51, 1097-1109 (1995).
[CrossRef] [PubMed]

R. F. Stebbings and F. B. Dunning, “Autoionization from high-lying 3p5(P1/22)np levels in argon,” Phys. Rev. A 8, 665-667 (1973).
[CrossRef]

F. B. Dunning and R. F. Stebbings, “Role of autoionization in the near-threshold photoionization of argon and krypton metastable atoms,” Phys. Rev. A 9, 2378-2382 (1974).
[CrossRef]

W. L. Wiese, J. W. Brault, K. Danzmann, V. Helbig, and M. Kock, “Unified set of atomic transition probabilities for neutral argon,” Phys. Rev. A 39, 2461-2471 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Keeler and T. J. Morgan, “Scaled-energy spectroscopy of the Rydberg-Stark spectrum of helium: influence of exchange on recurrence spectra,” Phys. Rev. Lett. 80, 5726-5729 (1998).
[CrossRef]

Other (2)

A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, 1988).

Yu. Ralchenko, A. E. Kramida, and J. Reader, “NIST Atomic Spectra Database,” http://physics.nist.gov/PhysRefData/ASD/index.html; see Ar I levels data.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The UV/visible Stark spectrum of autoionizing argon atoms in the region of the unshifted line from a fast ion-beam experiment [11, 12]. All lines in the spectrum exhibit a linear or quadratic Stark effect, except for one line created with visible light at 17585 cm 1 .

Fig. 2
Fig. 2

Zero-field laser-excitation diagram for the experiments described in Subsections 2A, 2B. The n l and n l labels designate the 3 p 5 ( P 1 2 2 ) n l and 3 p 5 ( P 3 2 2 ) n l states, respectively.

Fig. 3
Fig. 3

Mass-resolved photoionization spectra of metastable argon atoms. (a) The visible spectrum shows one peak at half of the 4 s 22 f transition frequency. (b) The UV spectrum shows transitions from the 4 s [ 3 2 ] 2 o metastable state to the n f and ( n + 2 ) p autoionization states ( n = 21 25 ) .

Fig. 4
Fig. 4

Experimental apparatus for the supersonic beam experiments described in Subsections 2B, 2C, 2D. The upper and lower grids are separated by 2 cm .

Fig. 5
Fig. 5

Laser-excitation diagram for the experiments described in Subsections 2C, 2D. The n l and n l labels designate the 3 p 5 ( P 1 2 2 ) n l and 3 p 5 ( P 3 2 2 ) n l and states, respectively.

Fig. 6
Fig. 6

Timing diagram for the PFI experiment described in Subsection 2D.

Fig. 7
Fig. 7

Example TOF spectra from a PFI experiment. The pump-laser frequency, ν 1 , is tuned to the 4 s [ 1 2 ] 0 o 3 d [ 3 2 ] 2 o transition. (a) The peak at 460 ns results from the detection of ions created by PFI after probe excitation to the 46 f [ 5 2 ] 3 Rydberg state, ν 2 = 14919.4 cm 1 . (b) The probe-laser frequency is off resonance, ν 2 = 14880.0 cm 1 . In each case, the peak at 585 ns results from the detection of ions created by photoionization with the pump laser. The ions created by PFI receive a greater impulse and arrive at the detector sooner than the ions created by photoionization. Peaks to the right of 585 ns are artifacts created by impedance mismatch.

Fig. 8
Fig. 8

PFI mass-resolved Rydberg spectrum. A 10 μ s delay and a 1 V cm field are introduced before the PFI pulse to improve spatial separation of PFI ions and photoions. The PFI peak field strength was 895 V cm .

Metrics