Abstract

We present the studies of the third- and higher-order nonlinear optical processes in barium titanate (BaTiO3) and strontium titanate (SrTiO3) nanoparticles. We measured the nonlinear refractive indices and nonlinear absorption coefficients of the BaTiO3 and SrTiO3 nanoparticles dissolved in ethylene glycol using the 790nm fs and ps pulses. The high-order harmonic generation up to the 39th order was achieved in the BaTiO3 and SrTiO3 nanoparticles-contained plumes when the femtosecond radiation propagated through the preformed plasma. The 1×106 and 4×106 high-order harmonic efficiencies at the plateau region were achieved in the cases of the BaTiO3 and SrTiO3 nanoparticles-contained plasmas.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads,” Appl. Phys. Lett. 79, 2106-2108 (2001).
    [CrossRef]
  2. T. Junno, M. H. Magnusson, S.-B. Carlsson, K. Deppert, J.-O. Malm, L. Montelius, and L. Samuelson, “Single-electron devices via controlled assembly of designed nanoparticles,” Microelectron. Eng. 47, 179-183 (1999).
    [CrossRef]
  3. T. W. Kim, D. C. Choo, J. H. Shim, and S. O. Kang “Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam,” Appl. Phys. Lett. 80, 2168-2170 (2002).
    [CrossRef]
  4. T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Pery, and R. W. Falcone, “High-order harmonic generation in atom clusters,” Phys. Rev. Lett. 76, 2472-2475 (1996).
    [CrossRef] [PubMed]
  5. W. Wang, L. Qu, G. Yang, and Z. Chen, “Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles,” Appl. Surf. Sci. 218, 24-28 (2003).
    [CrossRef]
  6. D. Y. Guan, Z. H. Chen, W. T. Wang, H. B. Lu, Y. L. Zhou, K. J. Jin, and G. Z. Yang, “Enhancement of optical nonlinearity in Ag:BaTiO3 composite films by applying an electric field during growth,” J. Opt. Soc. Am. B 22, 1949-1953 (2005).
    [CrossRef]
  7. H. Lotem and C. B. de Araujo, “Absolute determination of the two-photon-absorption coefficient relative to the inverse Raman cross section,” Phys. Rev. B 16, 1711-1716 (1977).
    [CrossRef]
  8. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350 (1989).
    [CrossRef]
  9. T. Boggess, J. O. White, and G. C. Valley, “Two-photon absorption and anisotropic transient energy transfer in BaTiO3 with 1-psec excitation,” J. Opt. Soc. Am. B 7, 2255-2258 (1990).
    [CrossRef]
  10. C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, “Cluster effects in high-order harmonics generated by ultrashort light pulses,” Appl. Phys. Lett. 86, 111121 (2005).
    [CrossRef]
  11. B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, and M. C. Downer, “Enhanced harmonic generation from expanding clusters,” Phys. Rev. Lett. 98, 123902 (2007).
    [CrossRef] [PubMed]
  12. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Sel. Top. Quantum Electron. 26, 760-768 (1990).
    [CrossRef]
  13. R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B: Lasers Opt. 78, 433-448 (2004).
    [CrossRef]
  14. M. Suzuki, M. Baba, H. Kuroda, R. A. Ganeev, and T. Ozaki, “Intense exact resonance enhancement of single-high-harmonic from an antimony ion by using Ti:sapphire laser at 37 nm,” Opt. Express 15, 1161-1166 (2007).
    [CrossRef] [PubMed]
  15. R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339, 103-109 (2005).
    [CrossRef]
  16. X. Lui, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197, 431-437 (2001).
    [CrossRef]
  17. J. M. C. Jonathan, G. Roosen, and P. Roussignol, “Time-resolved buildup of a photorefractive grating induced in Bi12SiO20 by picosecond light pulses,” Opt. Lett. 13, 224-226 (1988).
    [CrossRef] [PubMed]
  18. J. R. Vazquez de Aldana and L. Roso, “High-order harmonic generation in atomic clusters with a two-dimensional model,” J. Opt. Soc. Am. B 18, 325-330 (2001).
    [CrossRef]

2007 (2)

2005 (3)

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339, 103-109 (2005).
[CrossRef]

C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, “Cluster effects in high-order harmonics generated by ultrashort light pulses,” Appl. Phys. Lett. 86, 111121 (2005).
[CrossRef]

D. Y. Guan, Z. H. Chen, W. T. Wang, H. B. Lu, Y. L. Zhou, K. J. Jin, and G. Z. Yang, “Enhancement of optical nonlinearity in Ag:BaTiO3 composite films by applying an electric field during growth,” J. Opt. Soc. Am. B 22, 1949-1953 (2005).
[CrossRef]

2004 (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B: Lasers Opt. 78, 433-448 (2004).
[CrossRef]

2003 (1)

W. Wang, L. Qu, G. Yang, and Z. Chen, “Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles,” Appl. Surf. Sci. 218, 24-28 (2003).
[CrossRef]

2002 (1)

T. W. Kim, D. C. Choo, J. H. Shim, and S. O. Kang “Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam,” Appl. Phys. Lett. 80, 2168-2170 (2002).
[CrossRef]

2001 (3)

C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads,” Appl. Phys. Lett. 79, 2106-2108 (2001).
[CrossRef]

X. Lui, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197, 431-437 (2001).
[CrossRef]

J. R. Vazquez de Aldana and L. Roso, “High-order harmonic generation in atomic clusters with a two-dimensional model,” J. Opt. Soc. Am. B 18, 325-330 (2001).
[CrossRef]

1999 (1)

T. Junno, M. H. Magnusson, S.-B. Carlsson, K. Deppert, J.-O. Malm, L. Montelius, and L. Samuelson, “Single-electron devices via controlled assembly of designed nanoparticles,” Microelectron. Eng. 47, 179-183 (1999).
[CrossRef]

1996 (1)

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Pery, and R. W. Falcone, “High-order harmonic generation in atom clusters,” Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

1990 (2)

T. Boggess, J. O. White, and G. C. Valley, “Two-photon absorption and anisotropic transient energy transfer in BaTiO3 with 1-psec excitation,” J. Opt. Soc. Am. B 7, 2255-2258 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Sel. Top. Quantum Electron. 26, 760-768 (1990).
[CrossRef]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350 (1989).
[CrossRef]

1988 (1)

1977 (1)

H. Lotem and C. B. de Araujo, “Absolute determination of the two-photon-absorption coefficient relative to the inverse Raman cross section,” Phys. Rev. B 16, 1711-1716 (1977).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B: Lasers Opt. 78, 433-448 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. De Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, “Cluster effects in high-order harmonics generated by ultrashort light pulses,” Appl. Phys. Lett. 86, 111121 (2005).
[CrossRef]

C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads,” Appl. Phys. Lett. 79, 2106-2108 (2001).
[CrossRef]

T. W. Kim, D. C. Choo, J. H. Shim, and S. O. Kang “Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam,” Appl. Phys. Lett. 80, 2168-2170 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

W. Wang, L. Qu, G. Yang, and Z. Chen, “Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles,” Appl. Surf. Sci. 218, 24-28 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Sel. Top. Quantum Electron. 26, 760-768 (1990).
[CrossRef]

J. Opt. Soc. Am. B (3)

Microelectron. Eng. (1)

T. Junno, M. H. Magnusson, S.-B. Carlsson, K. Deppert, J.-O. Malm, L. Montelius, and L. Samuelson, “Single-electron devices via controlled assembly of designed nanoparticles,” Microelectron. Eng. 47, 179-183 (1999).
[CrossRef]

Opt. Commun. (1)

X. Lui, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197, 431-437 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339, 103-109 (2005).
[CrossRef]

Phys. Rev. B (2)

H. Lotem and C. B. de Araujo, “Absolute determination of the two-photon-absorption coefficient relative to the inverse Raman cross section,” Phys. Rev. B 16, 1711-1716 (1977).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350 (1989).
[CrossRef]

Phys. Rev. Lett. (2)

T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Pery, and R. W. Falcone, “High-order harmonic generation in atom clusters,” Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, and M. C. Downer, “Enhanced harmonic generation from expanding clusters,” Phys. Rev. Lett. 98, 123902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for the measurements of the low-order nonlinear optical characteristics of nanoparticles suspensions. L, Ti:sapphire laser; BS, beam splitter; PD1 and PD2, photodiodes; FL, focusing lens; S, sample; TS, translating stage; and A, aperture.

Fig. 2
Fig. 2

Experimental setup for the HHG studies from nanoparticles-contained plumes. MP, main pulse; PP, prepulse; DL, delay line; C, grating compressor; FL, focusing lenses; T, target; XUVS, XUV spectrometer; G, gold-coated grating; MCP, microchannel plate; and CCD, charge-coupled device.

Fig. 3
Fig. 3

TEM micrographs of the (a) Ba Ti O 3 and (b) Sr Ti O 3 nanoparticles.

Fig. 4
Fig. 4

EDX spectra obtained from the (a) Ba Ti O 3 and (b) Sr Ti O 3 nanoparticles.

Fig. 5
Fig. 5

HRTEM images of the (a) Ba Ti O 3 and (b) Sr Ti O 3 nanoparticles. Insets: electron diffraction patterns of corresponding nanoparticles.

Fig. 6
Fig. 6

Normalized transmittance dependences in the cases of (a) Ba Ti O 3 and (b) Sr Ti O 3 nanoparticles-contained suspensions measured using the 210 ps pulses. Solid curves are the theoretical fits.

Fig. 7
Fig. 7

Normalized transmittance dependences of the (a) Ba Ti O 3 nanoparticles-contained suspension (open circles) and Ba Ti O 3 crystal (filled squares), and (b) Sr Ti O 3 nanoparticles-contained suspension measured using the 120 fs pulses. Solid curves are the theoretical fits.

Fig. 8
Fig. 8

High-order harmonic spectra obtained from the plasmas produced on the surfaces of (a) Ba Ti O 3 nanoparticles-contained substrates ( I pp = 8 × 10 9 W cm 2 ) and (b) Ba Ti O 3 bulk crystal. Curves 1 and 2 in (b) correspond to the prepulse intensities of 3 × 10 10 W cm 2 and 5 × 10 10 W cm 2 , respectively.

Fig. 9
Fig. 9

High-order harmonic spectra obtained from the plasma produced on the surface of Sr Ti O 3 nanoparticles-contained substrate. The measurements were carried out at the prepulse intensity of 8 × 10 9 W cm 2 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) = 1 + 4 x ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ 0 2 ( x 2 + 3 ) ( x 2 + 9 ) ( x 2 + 1 ) Δ ψ 0 ,
T = 1 + 2 ( ρ x 2 + 2 x 3 ρ ) ( x 2 + 9 ) ( x 2 + 1 ) Δ Φ o .

Metrics