Abstract

Omnidirectional total reflection (ODTR) has a wide variety of applications, such as in optical communication, electromagnetic energy transportation, and solar energy engineering. We propose a type of photonic structure made of dielectric and magnetic 1D photonic crystals (PCs). Simulations by the optical transmission matrix method demonstrate that such structures can achieve ODTR in a wide wavelength range. In such structures, the total reflections of the s-polarization part and p-polarization part of the incident wave are caused by the 1D dielectric sub-PC and the 1D magnetic sub-PC, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  5. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  6. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573-1575 (1998).
    [CrossRef]
  7. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25-28 (1999).
    [CrossRef]
  8. W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464-5467 (1999).
    [CrossRef]
  9. E. Cojocaru, “Omnidirectional reflection from solc-type anisotropic periodic dielectric structures,” Appl. Opt. 39, 6441-6447 (2000).
    [CrossRef]
  10. J. Lekner, “Omnidirectional reflection by multilayer dielectric mirrors,” J. Opt. A, Pure Appl. Opt. 2, 349-352 (2000).
    [CrossRef]
  11. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett. 26, 1197-1199 (2001).
    [CrossRef]
  12. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total-reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291-4293 (2002).
    [CrossRef]
  13. B. Huang, P. Gu, and L. Yang, “Construction of one-dimensional photonic crystals based on the incident angle domain,” Phys. Rev. E 68, 046601 (2003).
    [CrossRef]
  14. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
    [CrossRef]
  15. P. Han and H. Wang, “Extension of omnidirectional reflection range in one-dimensional photonic crystals with a staggered structure,” J. Opt. Soc. Am. B 20, 1996-2001 (2003).
    [CrossRef]
  16. K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570-1576 (2004).
    [CrossRef] [PubMed]
  17. G. P. Wang, Y. Yi, and W. Lin, “Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography,” J. Opt. Soc. Am. B 21, 554-561 (2004).
    [CrossRef]
  18. L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
    [CrossRef]
  19. P. Han and H. Wang, “Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure,” J. Opt. Soc. Am. B 22, 1571-1575 (2005).
    [CrossRef]
  20. S. K. Awasthi, U. Malaviya, and S. P. Ojha, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B 23, 2566-2571 (2006).
    [CrossRef]
  21. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
    [CrossRef]
  22. Z. Wang and D. Liu, “Special kind of photonic crystals with omnidirectional bandgaps,” J. Opt. Soc. Am. B 23, 2601-2604 (2006).
    [CrossRef]
  23. Y. Xiang, X. Dai, and S. Wen, “Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials,” J. Opt. Soc. Am. B 24, 2033-2039 (2007).
    [CrossRef]
  24. I. Nusinsky and A. A. Hardy, “Omnidirectional reflection in several frequency ranges of one-dimensional photonic crystals,” Appl. Opt. 46, 3510-3517 (2007).
    [CrossRef] [PubMed]
  25. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials,” J. Opt. Soc. Am. A 24, A28-A32 (2007).
    [CrossRef]
  26. M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959-962 (1997).
    [CrossRef]
  27. S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
    [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 67-90.
  29. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, 1986), pp. 177-179.

2007 (3)

2006 (4)

2005 (1)

2004 (3)

2003 (3)

B. Huang, P. Gu, and L. Yang, “Construction of one-dimensional photonic crystals based on the incident angle domain,” Phys. Rev. E 68, 046601 (2003).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

P. Han and H. Wang, “Extension of omnidirectional reflection range in one-dimensional photonic crystals with a staggered structure,” J. Opt. Soc. Am. B 20, 1996-2001 (2003).
[CrossRef]

2002 (1)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total-reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291-4293 (2002).
[CrossRef]

2001 (1)

2000 (2)

E. Cojocaru, “Omnidirectional reflection from solc-type anisotropic periodic dielectric structures,” Appl. Opt. 39, 6441-6447 (2000).
[CrossRef]

J. Lekner, “Omnidirectional reflection by multilayer dielectric mirrors,” J. Opt. A, Pure Appl. Opt. 2, 349-352 (2000).
[CrossRef]

1999 (2)

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25-28 (1999).
[CrossRef]

W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464-5467 (1999).
[CrossRef]

1998 (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573-1575 (1998).
[CrossRef]

1997 (1)

M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959-962 (1997).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. A (1)

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25-28 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total-reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291-4293 (2002).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Lekner, “Omnidirectional reflection by multilayer dielectric mirrors,” J. Opt. A, Pure Appl. Opt. 2, 349-352 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (7)

Opt. Lett. (2)

Phys. Rev. B (2)

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959-962 (1997).
[CrossRef]

Phys. Rev. E (1)

B. Huang, P. Gu, and L. Yang, “Construction of one-dimensional photonic crystals based on the incident angle domain,” Phys. Rev. E 68, 046601 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Other (4)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), pp. 67-90.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, 1986), pp. 177-179.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the photonic heterostructure.

Fig. 2
Fig. 2

Bandgaps of the dielectric 1D PC ( H 1 L 1 ) 15 versus the incident angle, where line 1 and curve 2 represent the upper and lower edge for s polarization, respectively, and curves 3 and 4 represent that for p polarization.

Fig. 3
Fig. 3

Bandgaps of the magnetic 1D PC ( H 2 L 2 ) 15 versus the incident angle, where the types of line and curves have the same meaning as those in Fig. 2.

Fig. 4
Fig. 4

Bandgaps of the combined structure ( H 1 L 1 ) 15 H 1 ( H 2 L 2 ) 15 versus the incident angle, where the types of line and curves have the same meaning as those in Fig. 2.

Fig. 5
Fig. 5

Transmission character of ( H 1 L 1 ) 15 H 1 ( H 2 L 2 ) 15 , where: (a) is for s polarization and (b) is for p polarization.

Fig. 6
Fig. 6

Bandgaps of the combined structure ( H 1 H 2 ) 15 versus the incident angle, where the types of line and curves have the same meaning as those in Fig. 2.

Fig. 7
Fig. 7

Transmission character of ( H 1 H 2 ) 15 , where (a) is for s polarization and (b) is for p polarization.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U q = [ cos β q i p q sin β q i p q sin β q cos β q ] ,
M = q = 1 n U q = [ m 11 m 12 m 21 m 22 ] .
R = ( m 11 + m 12 p B ) p A ( m 21 + m 22 p B ) ( m 11 + m 12 p B ) p A + ( m 21 + m 22 p B ) 2 ,
T = p B p A 2 p A ( m 11 + m 12 p B ) p A + ( m 21 + m 22 p B ) 2 ,

Metrics