Abstract

Transmission of intense femtosecond 825nm pulses progressively produces a waveguide at the entrance of a heavily Ge-doped silicate fiber. The waveguide behaves as a multimillimeter long-fiber bandpass filter that scatters away light with wavelengths shorter or longer than 850nm. This phenomenon has been correlated with the 800nm photosensitivity producing type I-IR fiber Bragg gratings in side-written lightly Ge-doped silicate fibers and low-loss waveguides in pure silica bulk glass. A model incorporating color center formation is proposed to understand the underlying mechanism.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Streltsov and N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  2. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, "Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication," J. Opt. Soc. Am. B 22, 2138-2143 (2005).
    [CrossRef]
  3. C. Smelser, S. Mihailov, and D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
    [CrossRef] [PubMed]
  4. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, "Laser-induced defects in fused silica by femtosecond IR irradiation," Phys. Rev. B 73, 224117 (2006).
    [CrossRef]
  5. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  6. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, "Stress in femtosecond-laser-written waveguides in fused silica," Opt. Lett. 29, 1312-1314 (2004).
    [CrossRef] [PubMed]
  7. M. Kristensen, "Ultraviolet-light-induced processes in germanium-doped silica," Phys. Rev. B 64, 144201 (2001).
    [CrossRef]
  8. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
    [CrossRef] [PubMed]
  9. M. M. Broer, D. M. Krol, and D. J. DiGiovanni, "Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber," Opt. Lett. 18, 799-801 (1993).
    [CrossRef] [PubMed]
  10. P. Laperle, A. Chandonnet, and R. Vallee, "Photoinduced absorption in thulium-doped ZBLAN fibers," Opt. Lett. 20, 2484-2486 (1995).
    [CrossRef] [PubMed]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  12. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  13. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002).
    [CrossRef]
  14. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, "Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides," Appl. Opt. 24, 4404-4407 (1985).
    [CrossRef] [PubMed]
  15. D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Technol. 18, R1-R29 (2007).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 517.
  17. L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
    [CrossRef]
  18. B. B. Stefanov and K. Raghavachari, "Photoabsorption of the neutral oxygen vacancy in silicate and germanosilicate glasses: first-principles calculations," Phys. Rev. B 56, 5035-5038 (1997).
    [CrossRef]

2007 (1)

D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Technol. 18, R1-R29 (2007).
[CrossRef]

2006 (2)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, "Laser-induced defects in fused silica by femtosecond IR irradiation," Phys. Rev. B 73, 224117 (2006).
[CrossRef]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2002 (2)

2001 (2)

2000 (2)

1998 (1)

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

1997 (1)

B. B. Stefanov and K. Raghavachari, "Photoabsorption of the neutral oxygen vacancy in silicate and germanosilicate glasses: first-principles calculations," Phys. Rev. B 56, 5035-5038 (1997).
[CrossRef]

1995 (1)

1993 (1)

1985 (1)

Appl. Opt. (1)

J. Non-Cryst. Solids (1)

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide," J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Technol. 18, R1-R29 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. B (3)

M. Kristensen, "Ultraviolet-light-induced processes in germanium-doped silica," Phys. Rev. B 64, 144201 (2001).
[CrossRef]

B. B. Stefanov and K. Raghavachari, "Photoabsorption of the neutral oxygen vacancy in silicate and germanosilicate glasses: first-principles calculations," Phys. Rev. B 56, 5035-5038 (1997).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, "Laser-induced defects in fused silica by femtosecond IR irradiation," Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 517.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) CES of a UHNA3 fiber when freshly prepared and light treated ( 825 nm , 200 mW , 540 min ) ; (b) CE kinetics of (a) at 925 nm (dot) and corresponding first order exponential decay fit (curve); (c) CES of another UHNA3 fiber when freshly prepared, light treated ( 825 nm , 400 mW , 20 min ) , and flame recovered; (d) CE kinetics of (c) at 925 nm (dot) and corresponding first-order exponential decay fit (curve); (e) double-logarithmic plot of decay rate τ 1 versus pump power P in at λ probe = 925 nm .

Fig. 2
Fig. 2

(a) Spectra of the scattered light collected by a fiber-optic spectrometer at several instances of CE ( λ probe = 925 nm ) ; (b) complimentary correspondence between the scaled scattering intensity and corresponding CE in (a) with increasing pumping time; (c) complimentary correspondence between the scaled scattered intensity and corresponding CE in (b) at the under-focus or over-focus conditions of the aspheric lens before pumping.

Fig. 3
Fig. 3

(left) SEM image of the entrance facet of a freshly cleaved fiber near the germanosilicate core, the scale bar represents 2 μ m ; (right) SEM image of the entrance facet of an irradiated fiber ( 825 nm , 400 mW , 20 h in five days) near the germanosilicate core.

Metrics