Abstract

We describe the design of a silicon-based source for radiation in the 0.514THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Mueller, "Terahertz radiation sources for imaging and sensing applications," Photonics Spectra 40, 60 (2006).
  2. M. Hoheisel, "Review of medical imaging with emphasis on X-ray detectors," Nucl. Instrum. Methods Phys. Res. A 563, 215-224 (2006).
    [Crossref]
  3. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
    [Crossref]
  4. A. V. Quema, M. Goto, M. Sakai, R. E. Oenzerfi, H. Takahashi, H. Murakami, S. Ono, N. Sarukura, and G. Janairo, "Onset detection of solid-state phase transition in estrogen-like chemical via terahertz transmission spectroscopy," Appl. Phys. Lett. 85, 3914-3916 (2004).
    [Crossref]
  5. K. J. Linden, W. R. Neal, J. Waldman, A. J. Gatesman, and A. Danylov, "Terahertz laser based standoff imaging system," in 34th Applied Imagery Pattern Recognition Workshop (Applied Imagery Pattern Recognition, 2005), pp. 7-14.
    [Crossref]
  6. Bruker Optics, http://www.brukeroptics.com.
  7. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
    [Crossref]
  8. V. Kukushkin, "Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures," J. Opt. Soc. Am. B 23, 2528-2534 (2006).
    [Crossref]
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
    [Crossref] [PubMed]
  10. Virginia Diodes, Inc., http://virginiadiodes. com/.
  11. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nat. Photonics 1, 288-292 (2007).
    [Crossref]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
    [Crossref] [PubMed]
  13. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
    [Crossref]
  14. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
    [Crossref]
  15. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007).
    [Crossref]
  16. L. R. Dalton, Chemistry Department, University of Washington, Box 351700, Seattle, Wash, 98195 (personal communication, 2006).
  17. A. Yariv, Quantum Electronics (Wiley, 1989).
  18. T. Baehr-Jones, M. Hochberg, G. X. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
    [Crossref] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  20. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," J. Lightwave Technol. 23, 4215-4221 (2005).
    [Crossref]
  21. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
    [Crossref] [PubMed]
  23. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
    [Crossref]
  24. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [Crossref] [PubMed]
  25. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
    [Crossref]
  26. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photonics Technol. Lett. 17, 735-737 (2005).
    [Crossref]
  27. Calmar Optcom, http://www.calmaropt.com.
  28. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. D. Luo, A. K. Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightwave Technol. 24, 3514-3519 (2006).
    [Crossref]
  29. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [Crossref] [PubMed]
  30. A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).
  31. D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
    [Crossref]
  32. T. Baehr-Jones, M. Hochberg, and A. Scherer are preparing a manuscript to be called "Photodetection in silicon beyond the band edge with surface states."
  33. B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
    [Crossref]
  34. S. F. Preble, Q. Xu, B. Schmidt, and M. Lipson, "Ultra-fast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [Crossref] [PubMed]
  35. H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
    [Crossref] [PubMed]
  36. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [Crossref]
  37. M. Borselli, "High-Q microresonators as lasing elements for silicon photonics," Ph.D. thesis (California Institute of Technology, 2006).
  38. R. Soref and B. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [Crossref]

2007 (5)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nat. Photonics 1, 288-292 (2007).
[Crossref]

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007).
[Crossref]

B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

2006 (7)

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[Crossref] [PubMed]

E. Mueller, "Terahertz radiation sources for imaging and sensing applications," Photonics Spectra 40, 60 (2006).

M. Hoheisel, "Review of medical imaging with emphasis on X-ray detectors," Nucl. Instrum. Methods Phys. Res. A 563, 215-224 (2006).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[Crossref] [PubMed]

H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
[Crossref] [PubMed]

H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. D. Luo, A. K. Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonator-based electro-optic polymer traveling-wave modulator," J. Lightwave Technol. 24, 3514-3519 (2006).
[Crossref]

V. Kukushkin, "Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures," J. Opt. Soc. Am. B 23, 2528-2534 (2006).
[Crossref]

2005 (7)

2004 (4)

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[Crossref] [PubMed]

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[Crossref]

A. V. Quema, M. Goto, M. Sakai, R. E. Oenzerfi, H. Takahashi, H. Murakami, S. Ono, N. Sarukura, and G. Janairo, "Onset detection of solid-state phase transition in estrogen-like chemical via terahertz transmission spectroscopy," Appl. Phys. Lett. 85, 3914-3916 (2004).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[Crossref]

2002 (2)

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

1987 (1)

R. Soref and B. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[Crossref]

Appl. Phys. Lett. (5)

A. V. Quema, M. Goto, M. Sakai, R. E. Oenzerfi, H. Takahashi, H. Murakami, S. Ono, N. Sarukura, and G. Janairo, "Onset detection of solid-state phase transition in estrogen-like chemical via terahertz transmission spectroscopy," Appl. Phys. Lett. 85, 3914-3916 (2004).
[Crossref]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[Crossref]

D. Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett. 87, 261108 (2005).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, and M. Notomi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Soref and B. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photonics Technol. Lett. 17, 735-737 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[Crossref]

Nat. Mater. (1)

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, "Terahertz all-optical modulation in a silicon-polymer hybrid system," Nat. Mater. 5, 703-709 (2006).
[Crossref] [PubMed]

Nat. Photonics (4)

B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nat. Photonics 1, 288-292 (2007).
[Crossref]

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).
[Crossref]

Nature (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).
[Crossref] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Hoheisel, "Review of medical imaging with emphasis on X-ray detectors," Nucl. Instrum. Methods Phys. Res. A 563, 215-224 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photonics Spectra (1)

E. Mueller, "Terahertz radiation sources for imaging and sensing applications," Photonics Spectra 40, 60 (2006).

Proc. IEEE (1)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994).
[Crossref] [PubMed]

Other (11)

Virginia Diodes, Inc., http://virginiadiodes. com/.

K. J. Linden, W. R. Neal, J. Waldman, A. J. Gatesman, and A. Danylov, "Terahertz laser based standoff imaging system," in 34th Applied Imagery Pattern Recognition Workshop (Applied Imagery Pattern Recognition, 2005), pp. 7-14.
[Crossref]

Bruker Optics, http://www.brukeroptics.com.

L. R. Dalton, Chemistry Department, University of Washington, Box 351700, Seattle, Wash, 98195 (personal communication, 2006).

A. Yariv, Quantum Electronics (Wiley, 1989).

T. Baehr-Jones, M. Hochberg, and A. Scherer are preparing a manuscript to be called "Photodetection in silicon beyond the band edge with surface states."

A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2000).

Calmar Optcom, http://www.calmaropt.com.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

M. Borselli, "High-Q microresonators as lasing elements for silicon photonics," Ph.D. thesis (California Institute of Technology, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the terahertz generation device. An isometric view of the device is shown. The narrow rectangle corresponds to the silicon waveguide atop an oxide pillar, while the base corresponds to bulk silicon that has been micromachined. The thick rectangles indicate the metal waveguide structure, made of copper.

Fig. 2
Fig. 2

Diagram of the optical waveguide. Diagram is shown in panel A, with contours of the mode rendered in increments of 10% of E assuming 1 W of input power. The waveguide used was 500 nm wide and 100 nm tall; the width of this waveguide is varied as a design parameter. The Silicon wire waveguide is supported by a 100 nm wide pillar of Si O 2 . In panel B, the dispersion diagrams of several waveguide widths are plotted.

Fig. 3
Fig. 3

Terahertz waveguide modal patterns. The modal patterns for terahertz waveguide I is shown in panels A and B, at frequencies 1 and 6 THz , respectively, for 1 W of propagating power. The modal patterns for terahertz waveguide II are shown in panels C and D at 6 and 14 THz , respectively. In all cases, the E field contours are plotted in increments of 5%. The maximum field in Volts per meter is also indicated on a scale bar. This is for a mode with a time-average energy of 1 W .

Fig. 4
Fig. 4

Characteristics of terahertz waveguide modes and output power. Panel A shows the effective index of the terahertz modes as a function of frequency. Panel B shows the waveguide loss in decibels per centimeter. In panel C, the output power is specified for devices specified in Table 1, in decibels of output power versus the output frequency in terahertz.

Tables (2)

Tables Icon

Table 1 Description of Terahertz Waveguides and Device Performances a

Tables Icon

Table 2 Full Device Designs with Their Performance Data a

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

( ε 0 t ε × × μ 0 t ) ( E H ) = ( ε 0 t χ i j k 2 E j E k 0 ) .
c i ( z ) ψ i ( x , y ) exp ( i β i z i ω i t ) .
( E H ) = i ( c i ( z ) ψ i ( x , y ) exp ( i β i z i ω i t ) + c i * ( z ) ψ i * ( x , y ) exp ( i β i z + i ω i t ) ) .
i z c i ( z ) ( H y ( x , y ) H x ( x , y ) 0 E y ( x , y ) E x ( x , y ) 0 ) exp ( i β i z i ω i t ) + c.c.
= ε 0 t ( χ x j k 2 E j E k χ y j k 2 E j E k χ z j k 2 E j E k 0 0 0 ) .
z c 3 ( z ) ( H 3 , y H 3 , x 0 E 3 , y E 3 , x 0 ) exp ( i β 3 z i ω 3 t ) = 2 ε 0 ( i ω 3 ) exp ( i β 1 z i β 2 z ) exp ( i ω 3 t ) c 1 ( z ) c 2 * ( z ) ( χ x j k 2 E 1 , j E 2 , k * χ y j k 2 E 1 , j E 2 , k * χ z j k 2 E 1 , j E 2 , k * 0 0 0 ) .
( E i , x * E i , y * E i , z * H i , x * H i , y * H i , z * ) ( H j , y H j , x 0 E j , y E j , x 0 ) d A = ( E i * × H j + E j × H i * ) z d A .
z c 3 ( z ) = 2 ε 0 ( i ω 3 ) exp ( i β 1 z i β 2 z i β 3 z ) c 1 ( z ) c 2 * ( z ) E 3 , i * χ i j k 2 E 1 , i E 2 , j * d A .
z c 3 ( z ) = 2 ( i ω 3 ) c 1 ( z ) c 2 * ( z ) χ x x x 2 γ α 3 c 3 ( z ) ,
γ = ε 0 E 3 , x * E 1 , x E 2 , x * d A .
P 3 ( L ) = 4 ω 3 2 P 1 P 2 ( χ x x x 2 γ ) 2 α 3 2 ( 1 exp ( α 3 L ) ) 2 .
n 3 = n ( ω 1 ) ω 1 n ( ω 2 ) ω 2 ω 1 ω 2 .
1 n z 2 1 n z 2 = E z r 33 .
χ z z z 2 = n z 4 r 33 2 .
E = P 2 A n ( μ 0 ε 0 ) 1 4 .
γ = ε 0 ( μ 0 ε 0 ) 3 4 1 n 1 n 2 n 3 A c A 1 A 2 A 3 1 2 3 2 P .
d I d z = α 1 I α 2 I 2 ,

Metrics