Abstract

We report calculations and experimental results on intracavity second-harmonic generation (SHG) using a mixture of an active lasing dye and a nonlinear optical chromophore. By applying a high-voltage electric field across the solution, synchronized with the dye laser emission, the chromophore molecules can be oriented as the laser emission develops, providing SHG of the laser beam. Compared to other approaches, this configuration does not require two separate optical components for the amplification and SHG, simplifying the design and realization of compact near-UV laser sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Drag, A. Desormeaux, M. Lefebvre, and E. Rosencher, "Entangled-cavity optical parametric oscillator for mid-infrared pulsed single-longitudinal-mode operation," Opt. Lett. 27, 1238-1240 (2002).
    [CrossRef]
  2. A. Brenier, C. Tu, M. Qiu, A. Jiang, J. Li, and B. Wu, "Spectroscopic properties, self-frequency doubling, and self-sum frequency mixing in GdAl3(BO3)4:Nd3+," J. Opt. Soc. Am. B 18, 1104-1110 (2001).
    [CrossRef]
  3. G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Geroges, A. Brun, F. Mougel, G. Aka, and D. Vivien, "Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers," J. Opt. Soc. Am. B 17, 1526-1530 (2000).
    [CrossRef]
  4. A. Brenier and G. Boulon, "Self-frequency-summing NYAB laser for tunable blue generation," Opt. Mater. 13, 311-317 (1999).
    [CrossRef]
  5. A. Brenier and G. Boulon, "Self-frequency summing NYAB laser for tunable uv generation," J. Lumin. 86, 125-128 (2000).
    [CrossRef]
  6. A. Otomo, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, W. H. G. Horsthuis, and G. R. Möhlmann, "Nonlinear contrawave mixing devices in poled-polymer waveguides," J. Opt. Soc. Am. B 15, 759-772 (1998).
    [CrossRef]
  7. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezennyilimba, and D. J. Williams, "Efficient phase-matched second-harmonic generation of blue light in an organic waveguide," Nature 367, 49-51 (1994).
    [CrossRef]
  8. W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer, and M. Fipse, "Polymer waveguides with optimized overlap integral for modal dispersion phase-matching," Appl. Phys. Lett. 70, 3347-3349 (1997).
    [CrossRef]
  9. S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohoma, T. Kaino, and M. Asobe, "Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure," Appl. Phys. Lett. 68, 1760-1762 (1996).
    [CrossRef]
  10. M. A. Mortazavi and G. Khanarian, "Quasi-phase-matched frequency doubling in bulk periodic polymeric structures," Opt. Lett. 19, 1290-1292 (1994).
    [CrossRef] [PubMed]
  11. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, "Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide," Opt. Lett. 20, 2273-2275 (1995).
    [CrossRef] [PubMed]
  12. S. Mittler-Neher, A. Otomo, G. I. Stegeman, C. Bosshard, W. H. G. Horsthuis, and G. R. Möhlmann, "Surface emitting SHG light by counter propagation of guided waves in a plane parallel poled DANS side chain polymer," Adv. Mater. (Weinheim, Ger.) 7, 463-465 (1995).
    [CrossRef]
  13. N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. (Weinheim, Ger.) 11, 363-370 (1999).
    [CrossRef]
  14. T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. D. Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
    [CrossRef]
  15. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
    [CrossRef]
  16. G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
    [CrossRef]
  17. S. Stagira, M. Zavelani-Rossi, M. Nisoli, S. DeSilvestri, G. Lanzani, C. Zenz, P. Mataloni, and G. Leising, "Single-mode picosecond blue laser emission from a solid conjugated polymer," Appl. Phys. Lett. 73, 2860-2862 (1998).
    [CrossRef]
  18. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees," J. Appl. Phys. 90, 3159-3166 (2001).
    [CrossRef]
  19. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal," Appl. Phys. Lett. 81, 3741-3743 (2002).
    [CrossRef]
  20. N. Lemaitre, A.-J. Attias, I. Ledoux, and J. Zyss, "New second-order NLO chromophores based on 3,3'-bipyridine: tuning of liquid crystal and NLO properties," Chem. Mater. 13, 1420-1427 (2001).
    [CrossRef]
  21. N. Leclerc, S. Sanaur, L. Galmiche, F. Mathevêt, A.-J. Attias, J.-L. Fave, J. Roussel, P. Hapiot, N. Lemaître, and B. Geffroy, "6-(arylvinylene)-3-bromopyridine derivatives as lego building blocks for liquid crystal, nonlinear optical, and blue light emitting chromophores," Chem. Mater. 17, 502-513 (2005).
    [CrossRef]
  22. F. Kajzar, I. Ledoux, and J. Zyss, "Electric-field-induced optical second-harmonic generation in polydiacetylene solutions," Phys. Rev. A 36, 2210-2219 (1987).
    [CrossRef] [PubMed]
  23. J. D. Swalen, "Linear optical properties of NLO polymers," Pure Appl. Opt. 5, 723-729 (1996).
    [CrossRef]
  24. P. Pretre, L. M. Wu, and A. Knoesen, "Optical properties of nonlinear optical polymers: a method for calculation," J. Opt. Soc. Am. B 15, 359-368 (1998).
    [CrossRef]
  25. C. Bosshard, G. Knopfle, P. Pretre, and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: a comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
    [CrossRef]
  26. I. Ledoux and J. Zyss, "Influence of the molecular environment in solution measurements of the second-order optical susceptibility for urea and derivatives," Chem. Phys. 73, 203-213 (1982).
    [CrossRef]
  27. A. Otomo and G. Stegeman, "Nonlinear contrawave mixing devices in poled-polymer waveguides," J. Opt. Soc. Am. B 15, 759-772 (1998).
    [CrossRef]
  28. G. Berkovic, G. Meshulam, and Z. Kotler, "Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime," J. Chem. Phys. 112, 3997-4003 (2000).
    [CrossRef]
  29. E. Rosencher and B. Vinter, Optoélectronique, 2nd ed. (DUNOD, 2002).
    [CrossRef]
  30. R. L. Sutherland, Handbook of Nonlinear Optics (CRC, 1996).

2005 (1)

N. Leclerc, S. Sanaur, L. Galmiche, F. Mathevêt, A.-J. Attias, J.-L. Fave, J. Roussel, P. Hapiot, N. Lemaître, and B. Geffroy, "6-(arylvinylene)-3-bromopyridine derivatives as lego building blocks for liquid crystal, nonlinear optical, and blue light emitting chromophores," Chem. Mater. 17, 502-513 (2005).
[CrossRef]

2003 (1)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

2002 (3)

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. D. Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal," Appl. Phys. Lett. 81, 3741-3743 (2002).
[CrossRef]

C. Drag, A. Desormeaux, M. Lefebvre, and E. Rosencher, "Entangled-cavity optical parametric oscillator for mid-infrared pulsed single-longitudinal-mode operation," Opt. Lett. 27, 1238-1240 (2002).
[CrossRef]

2001 (3)

A. Brenier, C. Tu, M. Qiu, A. Jiang, J. Li, and B. Wu, "Spectroscopic properties, self-frequency doubling, and self-sum frequency mixing in GdAl3(BO3)4:Nd3+," J. Opt. Soc. Am. B 18, 1104-1110 (2001).
[CrossRef]

N. Lemaitre, A.-J. Attias, I. Ledoux, and J. Zyss, "New second-order NLO chromophores based on 3,3'-bipyridine: tuning of liquid crystal and NLO properties," Chem. Mater. 13, 1420-1427 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees," J. Appl. Phys. 90, 3159-3166 (2001).
[CrossRef]

2000 (3)

A. Brenier and G. Boulon, "Self-frequency summing NYAB laser for tunable uv generation," J. Lumin. 86, 125-128 (2000).
[CrossRef]

G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Geroges, A. Brun, F. Mougel, G. Aka, and D. Vivien, "Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers," J. Opt. Soc. Am. B 17, 1526-1530 (2000).
[CrossRef]

G. Berkovic, G. Meshulam, and Z. Kotler, "Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime," J. Chem. Phys. 112, 3997-4003 (2000).
[CrossRef]

1999 (2)

A. Brenier and G. Boulon, "Self-frequency-summing NYAB laser for tunable blue generation," Opt. Mater. 13, 311-317 (1999).
[CrossRef]

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. (Weinheim, Ger.) 11, 363-370 (1999).
[CrossRef]

1998 (5)

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

S. Stagira, M. Zavelani-Rossi, M. Nisoli, S. DeSilvestri, G. Lanzani, C. Zenz, P. Mataloni, and G. Leising, "Single-mode picosecond blue laser emission from a solid conjugated polymer," Appl. Phys. Lett. 73, 2860-2862 (1998).
[CrossRef]

P. Pretre, L. M. Wu, and A. Knoesen, "Optical properties of nonlinear optical polymers: a method for calculation," J. Opt. Soc. Am. B 15, 359-368 (1998).
[CrossRef]

A. Otomo, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, W. H. G. Horsthuis, and G. R. Möhlmann, "Nonlinear contrawave mixing devices in poled-polymer waveguides," J. Opt. Soc. Am. B 15, 759-772 (1998).
[CrossRef]

A. Otomo and G. Stegeman, "Nonlinear contrawave mixing devices in poled-polymer waveguides," J. Opt. Soc. Am. B 15, 759-772 (1998).
[CrossRef]

1997 (1)

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer, and M. Fipse, "Polymer waveguides with optimized overlap integral for modal dispersion phase-matching," Appl. Phys. Lett. 70, 3347-3349 (1997).
[CrossRef]

1996 (2)

S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohoma, T. Kaino, and M. Asobe, "Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure," Appl. Phys. Lett. 68, 1760-1762 (1996).
[CrossRef]

J. D. Swalen, "Linear optical properties of NLO polymers," Pure Appl. Opt. 5, 723-729 (1996).
[CrossRef]

1995 (2)

S. Mittler-Neher, A. Otomo, G. I. Stegeman, C. Bosshard, W. H. G. Horsthuis, and G. R. Möhlmann, "Surface emitting SHG light by counter propagation of guided waves in a plane parallel poled DANS side chain polymer," Adv. Mater. (Weinheim, Ger.) 7, 463-465 (1995).
[CrossRef]

T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, "Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide," Opt. Lett. 20, 2273-2275 (1995).
[CrossRef] [PubMed]

1994 (2)

M. A. Mortazavi and G. Khanarian, "Quasi-phase-matched frequency doubling in bulk periodic polymeric structures," Opt. Lett. 19, 1290-1292 (1994).
[CrossRef] [PubMed]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezennyilimba, and D. J. Williams, "Efficient phase-matched second-harmonic generation of blue light in an organic waveguide," Nature 367, 49-51 (1994).
[CrossRef]

1992 (1)

C. Bosshard, G. Knopfle, P. Pretre, and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: a comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
[CrossRef]

1987 (1)

F. Kajzar, I. Ledoux, and J. Zyss, "Electric-field-induced optical second-harmonic generation in polydiacetylene solutions," Phys. Rev. A 36, 2210-2219 (1987).
[CrossRef] [PubMed]

1982 (1)

I. Ledoux and J. Zyss, "Influence of the molecular environment in solution measurements of the second-order optical susceptibility for urea and derivatives," Chem. Phys. 73, 203-213 (1982).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (2)

S. Mittler-Neher, A. Otomo, G. I. Stegeman, C. Bosshard, W. H. G. Horsthuis, and G. R. Möhlmann, "Surface emitting SHG light by counter propagation of guided waves in a plane parallel poled DANS side chain polymer," Adv. Mater. (Weinheim, Ger.) 7, 463-465 (1995).
[CrossRef]

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. (Weinheim, Ger.) 11, 363-370 (1999).
[CrossRef]

Appl. Phys. Lett. (6)

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. D. Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett. 82, 313-315 (2003).
[CrossRef]

W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer, and M. Fipse, "Polymer waveguides with optimized overlap integral for modal dispersion phase-matching," Appl. Phys. Lett. 70, 3347-3349 (1997).
[CrossRef]

S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohoma, T. Kaino, and M. Asobe, "Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure," Appl. Phys. Lett. 68, 1760-1762 (1996).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, "Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal," Appl. Phys. Lett. 81, 3741-3743 (2002).
[CrossRef]

S. Stagira, M. Zavelani-Rossi, M. Nisoli, S. DeSilvestri, G. Lanzani, C. Zenz, P. Mataloni, and G. Leising, "Single-mode picosecond blue laser emission from a solid conjugated polymer," Appl. Phys. Lett. 73, 2860-2862 (1998).
[CrossRef]

Chem. Mater. (2)

N. Lemaitre, A.-J. Attias, I. Ledoux, and J. Zyss, "New second-order NLO chromophores based on 3,3'-bipyridine: tuning of liquid crystal and NLO properties," Chem. Mater. 13, 1420-1427 (2001).
[CrossRef]

N. Leclerc, S. Sanaur, L. Galmiche, F. Mathevêt, A.-J. Attias, J.-L. Fave, J. Roussel, P. Hapiot, N. Lemaître, and B. Geffroy, "6-(arylvinylene)-3-bromopyridine derivatives as lego building blocks for liquid crystal, nonlinear optical, and blue light emitting chromophores," Chem. Mater. 17, 502-513 (2005).
[CrossRef]

Chem. Phys. (1)

I. Ledoux and J. Zyss, "Influence of the molecular environment in solution measurements of the second-order optical susceptibility for urea and derivatives," Chem. Phys. 73, 203-213 (1982).
[CrossRef]

J. Appl. Phys. (2)

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees," J. Appl. Phys. 90, 3159-3166 (2001).
[CrossRef]

C. Bosshard, G. Knopfle, P. Pretre, and P. Gunter, "Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: a comparative study," J. Appl. Phys. 71, 1594-1605 (1992).
[CrossRef]

J. Chem. Phys. (1)

G. Berkovic, G. Meshulam, and Z. Kotler, "Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime," J. Chem. Phys. 112, 3997-4003 (2000).
[CrossRef]

J. Lumin. (1)

A. Brenier and G. Boulon, "Self-frequency summing NYAB laser for tunable uv generation," J. Lumin. 86, 125-128 (2000).
[CrossRef]

J. Opt. Soc. Am. B (5)

Nature (1)

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezennyilimba, and D. J. Williams, "Efficient phase-matched second-harmonic generation of blue light in an organic waveguide," Nature 367, 49-51 (1994).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

A. Brenier and G. Boulon, "Self-frequency-summing NYAB laser for tunable blue generation," Opt. Mater. 13, 311-317 (1999).
[CrossRef]

Phys. Rev. A (1)

F. Kajzar, I. Ledoux, and J. Zyss, "Electric-field-induced optical second-harmonic generation in polydiacetylene solutions," Phys. Rev. A 36, 2210-2219 (1987).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. Wegmann, H. Giessen, A. Greiner, and R. F. Mahrt, "Laser emission from a solid conjugated polymer: gain, tunability, and coherence," Phys. Rev. B 57, R4218-R4221 (1998).
[CrossRef]

Pure Appl. Opt. (1)

J. D. Swalen, "Linear optical properties of NLO polymers," Pure Appl. Opt. 5, 723-729 (1996).
[CrossRef]

Other (2)

E. Rosencher and B. Vinter, Optoélectronique, 2nd ed. (DUNOD, 2002).
[CrossRef]

R. L. Sutherland, Handbook of Nonlinear Optics (CRC, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectra of the LDS821 (solid curve) and DR1 (dashed curve) molecules. The three vertical lines correspond to the wavelengths used in our experiment.

Fig. 2
Fig. 2

Evolution of the SHG component as a function of laser wavelength and NLO molecule concentration. The maximum corresponds to the resonance of the SHG component with the absorption peak of the NLO molecule.

Fig. 3
Fig. 3

Diagram of the lasing cell.

Fig. 4
Fig. 4

Evolution of the intensity of the (a) lasing ( ω ) and (b) EFIISFD ( 2 ω ) components as a function of the dye and NLO molecule concentration. The white dashed line in (a) indicates the lasing threshold.

Fig. 5
Fig. 5

Schematic of the experimental setup, showing the possible pump configuration and the synchronization connections.

Fig. 6
Fig. 6

Schematics of the EFIISD cell, providing the optical pumping and circulation of the solution. The outside of the cell is steel, grounded, while the inside is teflon providing electrical insulation between the cell body and the high-voltage electrode.

Fig. 7
Fig. 7

Photograph of the active region, taken along laser cavity axis, from the position of the front mirror. For scale, the distance between the two electrodes is approximately 3 mm .

Fig. 8
Fig. 8

Dependence of the SHG signal as a function of the electric field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 2 ω = { W Y [ ( 1 x DR 1 ) Γ solvent Γ G + x DR 1 Γ SHG Γ G ] [ e ( α 2 ω l 2 ) + T L T 2 t 2 ω L ] W [ e ( α 2 ω l 2 ) + T G ( t ω ( 2 ) t ω ( 3 ) ) 2 T 1 t 2 ω L ] } 2 + W Y 2 x DR 1 2 ( e ( α 2 ω l 2 ) + T L T 2 t 2 ω L ) ( Γ SHG Γ G ) 2 ,
β SHG β 0 = ω 0 2 3 [ 1 ( ω 0 + i δ + 2 ω ) ( ω 0 + i δ + ω ) + 1 ( ω 0 i δ 2 ω ) ( ω 0 i δ ω ) + 1 ( ω 0 + i δ + ω ) ( ω 0 i δ ω ) ] ,
β SHG β 0 = ω 0 2 3 1 π G e ( y 2 G 2 ) F ( ω 0 + y ) d y ,
d d t Δ N = ( Δ N 0 Δ N ) τ 2 K l Δ N P 1 ,
d d t P 1 = K l Δ N P 1 P 1 τ cav , 1 K n l P 1 2 ,
d d t P 2 = 1 2 K n l P 1 2 P 2 τ cav , 2 ,

Metrics