Abstract

Enhanced photorefractive properties of tin hypothiodiphosphate (Sn2P2S6) crystals as a result of Bi doping are presented. These new crystals were obtained by the vapor-transport technique using stoichiometric Sn2P2S6 composition with an additional amount of Bi up to 0.5mol.% in the initial compound. The bandgap edges of the obtained crystals are located at 750nm and shift toward the red wavelengths with increasing Bi concentration. Sn2P2S6:Bi crystals are found to exhibit larger two-beam coupling gain coefficients (up to 17cm1 at a wavelength of 854nm) as compared to (i) pure Sn2P2S6 (2.5cm1 at 854nm), (ii) Sn2P2S6 crystals modified by the growth conditions (14cm1 at 860nm), and (iii) Te-doped Sn2P2S6 (8cm1 at 860nm). At the same time, for an intensity of 1.3Wcm2 at 854nm, buildup times of 0.9 and 2.5ms at grating spacings of Λ=9.8 and 1.3μm, respectively, are found; Bi-doped Sn2P2S6 crystals are the fastest among all the presently known Sn2P2S6 crystals operating at near-infrared wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
    [CrossRef]
  2. D. Haertle, G. Caimi, A. Haidi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
    [CrossRef]
  3. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. Rupp, A. A. Grabar, and I. M. Stoika, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
    [CrossRef]
  4. A. Ruediger, O. Schirmer, S. G. Odoulov, A. N. Shumelyuk, and A. A. Grabar, "Studies of light-induced charge transfer in Sn2P2S6 by combined EPR/optical absorption spectroscopy," Opt. Mater. 18, 123-125 (2001).
    [CrossRef]
  5. M. Jazbinsek, D. Haertle, T. Bach, G. Montemezzani, P. Günter, A. A. Grabar, and Yu. M. Vysochanskii, "Sn2P2S6 crystals for fast near-infrared photorefraction," Ferroelectrics 318, 89-94 (2005).
    [CrossRef]
  6. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Yu. M. Vysochanskii, "Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping," J. Opt. Soc. Am. B 24, 1535-1541 (2007).
    [CrossRef]
  7. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, "Photorefractive effects in Sn2P2S6," in Photorefractive Materials and Their Applications 2: Materials, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
    [CrossRef]
  8. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, "Enhanced photorefractive properties of modified Sn2P2S6," Opt. Commun. 188, 187-194 (2001).
    [CrossRef]
  9. M. Jazbinsek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6," J. Opt. Soc. Am. B 22, 2459-2467 (2005).
    [CrossRef]
  10. A. A. Grabar, I. V. Kedyk, I. M. Stoika, Yu. M. Vysochanskii, M. Jazbinsek, G. Montemezzani, and P. Günter, "Enhanced photorefractive properties of Te-doped Sn2P2S6," in Photorefractive Effects, Materials, and Devices, OSA Trends in Optics and Photonics Series 87, 10-14 (2003).
  11. G. Dittmar and H. Shäfer, "Die struktur des di-zinn-hexatiohypodiphosphats Sn2P2S6," Z. Naturforsch. B 29, 312-317 (1974).
  12. C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mater. Res. Bull. 9, 1097-1100 (1974).
    [CrossRef]
  13. Yu. M. Vysochanskii, A. A. Horvat, A. A. Molnar, Yu. S. Nakonechnii, and S. I. Tisovskii, "Critical behaviour in a field for uniaxial ferroelectrics near the Lifshitz point," Ferroelectrics 183, 143-150 (1996).
    [CrossRef]
  14. A. A. Grabar, "Light-induced electric conductivity in Sn2P2S6," Ferroelectrics 192, 155-159 (1997).
    [CrossRef]
  15. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, 1983).
  16. S. R. Elliot, "A theory of a.c. conduction in chalcogenide glasses," Philos. Mag. 36, 1291-1304 (1977).
    [CrossRef]
  17. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
    [CrossRef]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskiy, "Holographic storage in electrooptic crystals. i. Steady state," Ferroelectrics 22, 949-960 (1979).
    [CrossRef]
  19. B. Sturman, P. Mathey, H. R. Jauslin, S. G. Odoulov, and A. A. Grabar, "Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals," J. Opt. Soc. Am. B 24, 1303-1309 (2007).
    [CrossRef]

2007 (2)

2005 (2)

M. Jazbinsek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6," J. Opt. Soc. Am. B 22, 2459-2467 (2005).
[CrossRef]

M. Jazbinsek, D. Haertle, T. Bach, G. Montemezzani, P. Günter, A. A. Grabar, and Yu. M. Vysochanskii, "Sn2P2S6 crystals for fast near-infrared photorefraction," Ferroelectrics 318, 89-94 (2005).
[CrossRef]

2003 (1)

D. Haertle, G. Caimi, A. Haidi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

2001 (2)

A. Ruediger, O. Schirmer, S. G. Odoulov, A. N. Shumelyuk, and A. A. Grabar, "Studies of light-induced charge transfer in Sn2P2S6 by combined EPR/optical absorption spectroscopy," Opt. Mater. 18, 123-125 (2001).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, "Enhanced photorefractive properties of modified Sn2P2S6," Opt. Commun. 188, 187-194 (2001).
[CrossRef]

1997 (1)

A. A. Grabar, "Light-induced electric conductivity in Sn2P2S6," Ferroelectrics 192, 155-159 (1997).
[CrossRef]

1996 (3)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskiy, "Holographic storage in electrooptic crystals. i. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

1977 (1)

S. R. Elliot, "A theory of a.c. conduction in chalcogenide glasses," Philos. Mag. 36, 1291-1304 (1977).
[CrossRef]

1974 (3)

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

G. Dittmar and H. Shäfer, "Die struktur des di-zinn-hexatiohypodiphosphats Sn2P2S6," Z. Naturforsch. B 29, 312-317 (1974).

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mater. Res. Bull. 9, 1097-1100 (1974).
[CrossRef]

Ferroelectrics (4)

Yu. M. Vysochanskii, A. A. Horvat, A. A. Molnar, Yu. S. Nakonechnii, and S. I. Tisovskii, "Critical behaviour in a field for uniaxial ferroelectrics near the Lifshitz point," Ferroelectrics 183, 143-150 (1996).
[CrossRef]

A. A. Grabar, "Light-induced electric conductivity in Sn2P2S6," Ferroelectrics 192, 155-159 (1997).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskiy, "Holographic storage in electrooptic crystals. i. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

M. Jazbinsek, D. Haertle, T. Bach, G. Montemezzani, P. Günter, A. A. Grabar, and Yu. M. Vysochanskii, "Sn2P2S6 crystals for fast near-infrared photorefraction," Ferroelectrics 318, 89-94 (2005).
[CrossRef]

J. Opt. Soc. Am. B (5)

Mater. Res. Bull. (2)

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mater. Res. Bull. 9, 1097-1100 (1974).
[CrossRef]

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

Opt. Commun. (2)

D. Haertle, G. Caimi, A. Haidi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, "Enhanced photorefractive properties of modified Sn2P2S6," Opt. Commun. 188, 187-194 (2001).
[CrossRef]

Opt. Mater. (1)

A. Ruediger, O. Schirmer, S. G. Odoulov, A. N. Shumelyuk, and A. A. Grabar, "Studies of light-induced charge transfer in Sn2P2S6 by combined EPR/optical absorption spectroscopy," Opt. Mater. 18, 123-125 (2001).
[CrossRef]

Philos. Mag. (1)

S. R. Elliot, "A theory of a.c. conduction in chalcogenide glasses," Philos. Mag. 36, 1291-1304 (1977).
[CrossRef]

Z. Naturforsch. B (1)

G. Dittmar and H. Shäfer, "Die struktur des di-zinn-hexatiohypodiphosphats Sn2P2S6," Z. Naturforsch. B 29, 312-317 (1974).

Other (3)

A. A. Grabar, I. V. Kedyk, I. M. Stoika, Yu. M. Vysochanskii, M. Jazbinsek, G. Montemezzani, and P. Günter, "Enhanced photorefractive properties of Te-doped Sn2P2S6," in Photorefractive Effects, Materials, and Devices, OSA Trends in Optics and Photonics Series 87, 10-14 (2003).

A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, 1983).

A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, "Photorefractive effects in Sn2P2S6," in Photorefractive Materials and Their Applications 2: Materials, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dispersion of the real ε and imaginary ε parts of the dielectric permittivity ε x measured in the Z plate SPS:Bi 0.5% at T = 291 K . In the polydomain state, ε is drawn in squares, and ε is in triangles. For the single domain state, ε is drawn in rhombus, and ε is in circles.

Fig. 2
Fig. 2

Frequency dependence of the ac electric conductivity σ ac measured in single domain state X plates for pure SPS (squares), SPS:Bi 0.01% (circles), and SPS:Bi 0.5% (triangles). The curves show the fits according to σ ac = σ dc + A ( 2 π f ) S .

Fig. 3
Fig. 3

Absorption spectra of pure SPS (open squares), SPS:Bi 0.01% (filled squares), SPS:Bi 0.1% (circles), and SPS:Bi 0.5% (triangles) crystals at room temperature and for X-polarized light.

Fig. 4
Fig. 4

Two-wave mixing gain Γ st at 854 nm as a function of the grating spacing Λ in pure SPS (squares), SPS:Bi 0.01% (circles), and SPS:Bi 0.5% (triangles) crystals for X-polarized light. The curves represent the best fits according to relation (2) with the parameters of ξ r eff , l S , and N R given in Table 1.

Fig. 5
Fig. 5

Temporal evolution of the signal beam amplification after switching on the pump beam at time t = 0 , in a 0.01% Bi-doped SPS crystal. The grating spacing is Λ = 9.8 μ m . The total light intensities are I 0 = 1.6 W cm 2 (squares), I 0 = 1 W cm 2 (circles), and I 0 = 0.3 W cm 2 (triangles). The first instants of the dynamics are shown in the inset.

Fig. 6
Fig. 6

First instants of the signal beam amplification after switching on the pump beam at time t = 0 , in a 0.01% Bi-doped SPS crystal, for different grating spacings: Λ = 1.1 μ m (filled triangles), Λ = 1.7 μ m (circles), Λ = 2.9 μ m (open triangles), and Λ = 9.8 μ m (squares). The total incident intensity is I 0 = 1.3 W cm 2 .

Fig. 7
Fig. 7

Dependence of the inverse fast time constant τ fast 1 τ 1 1 on the grating spacing for pure SPS (triangles), SPS:Bi 0.01% Bi (circles), and SPS:Bi 0.5% Bi (squares). The solid curves correspond to the best fits according to Eqs. (5, 6) with the parameters given in Table 1.

Fig. 8
Fig. 8

Intensity dependence of the grating formation rate τ fast 1 τ 1 1 for pure SPS (triangles), SPS:Bi 0.01% (circles), and SPS:Bi 0.5% (squares). The grating spacing is Λ = 9.8 μ m . The solid curves correspond to the best linear approximations.

Tables (2)

Tables Icon

Table 1 Optical, Dielectric and Photorefractive Parameters of Bi-Doped SPS Crystals Compared with Pure SPS

Tables Icon

Table 2 Parameters of the Fits According to Relation (8) for Grating Spacing Λ = 1.3 and 9.8 μ m a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ = 1 d ln I S d I R 0 I S 0 I R d ,
Γ = A Λ [ 1 + ( 2 π l S Λ ) 2 ] cos 2 Θ i cos Θ i ,
A = r eff ξ 4 π 2 n 3 k B T e λ ,
l s = ε ε 0 k B T e 2 N R ,
τ 1 τ PR 1 = C ( Λ ) ε ε 0 ( σ + e λ α ϕ μ τ R I 0 h c ) ,
C ( Λ ) = 1 + ( 2 π l S Λ ) 2 1 + ( 2 π L D Λ ) 2 .
L D = ( μ τ R k B T e ) 1 2 .
Γ ( t ) = 1 d ln ( I S ( t ) I S ( 0 ) ) = A 1 [ 1 exp ( t τ 1 ) ] + A 2 [ 1 exp ( t τ 2 ) ] + A 3 [ 1 exp ( t τ 3 ) ] ,

Metrics