Abstract

We generate a high-spectral-irradiance, high-quality continuum by weakly focusing femtosecond pulses in Kr gas. We use this continuum as a source for rapid Z-scan measurements of the degenerate nonlinear absorption spectrum and the associated dispersion of the nonlinear refraction in optical materials throughout the visible. We measure the degenerate two-photon absorption spectra and the dispersion of the nonlinear refractive index, n2, of two well-characterized semiconductors (ZnSe and ZnS) as reference samples for our method, along with dilute solutions of organic materials. The latter materials demonstrate application of the technique to samples with lower nonlinearities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, "White-light continuum Z-scan technique for nonlinear material characterization," Opt. Express 12, 3820-3826 (2004).
    [CrossRef] [PubMed]
  2. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, "Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan," Opt. Express 13, 3594-3599 (2005).
    [CrossRef] [PubMed]
  3. P. B. Corkum and C. Rolland, "Supercontinuum generation in gases," Phys. Rev. Lett. 57, 2268-2272 (1986).
    [CrossRef] [PubMed]
  4. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  5. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy bandgap dependence of two-photon absorption," Opt. Lett. 10, 490-492 (1985).
    [CrossRef] [PubMed]
  6. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
    [CrossRef]
  7. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation," Opt. Commun. 56, 67-72 (1985).
    [CrossRef]
  8. H. R. Lange, G. Grillon, J.-F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, and A. Mysyrowicz, "Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?" Opt. Lett. 23, 120-122 (1998).
    [CrossRef]
  9. A. Brodeur, C. Y. Chien, F. A. Ilkov, and S. L. Chin, "Moving focus in the propagation of ultrashort laser pulses in air," Opt. Lett. 22, 304-306 (1997).
    [CrossRef] [PubMed]
  10. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air," Opt. Lett. 23, 382-384 (1998).
    [CrossRef]
  11. M. Kolesik, E. M. Wright, A. Becker, and J. V. Moleney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air," Appl. Phys. B 85, 531-538 (2006)
    [CrossRef]
  12. R. Trebino, Frequency Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  13. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, "Lightemitting diodes as measurement devices for femtosecond laser pulses," Opt. Lett. 22, 233-235 (1997).
    [CrossRef] [PubMed]
  14. S. Ross, "A picosecond visible OPO as a tool for non-linear spectroscopy," Ph.D. dissertation (University of Central Florida, 1998).
  15. W. Rudolph, M. Sheik-Bahae, A. Bernstein, and L. F. Lester, "Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe," Opt. Lett. 22, 313-315 (1997).
    [CrossRef] [PubMed]
  16. R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe," IEEE J. Quantum Electron. 38, 1205-1216 (2002).
    [CrossRef]
  17. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, "High-sensitivity, single-beam n2 measurements," Opt. Lett. 14, 955-957 (1989).
    [CrossRef] [PubMed]
  18. S. Zheng, L. Beverina, S. Barlow, E. Zojer, J. Fu, L. A. Padilha, C. Fink, O. Kwon, Y. Yi, Z. Shuai, E. W. Van Stryland, D. J. Hagan, J. L. Bredas, and S. R. Marder, "High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges," Chem. Commun. (Cambridge) , 13, 1372-1374 (2007).
    [CrossRef]
  19. D. C. Hutchings, M. Sheik Bahae, D. J. Hagan, and E. W. Van Stryland, "Kramers-Kronig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
    [CrossRef]

2007 (1)

S. Zheng, L. Beverina, S. Barlow, E. Zojer, J. Fu, L. A. Padilha, C. Fink, O. Kwon, Y. Yi, Z. Shuai, E. W. Van Stryland, D. J. Hagan, J. L. Bredas, and S. R. Marder, "High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges," Chem. Commun. (Cambridge) , 13, 1372-1374 (2007).
[CrossRef]

2006 (1)

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moleney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air," Appl. Phys. B 85, 531-538 (2006)
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe," IEEE J. Quantum Electron. 38, 1205-1216 (2002).
[CrossRef]

1998 (2)

1997 (3)

1992 (1)

D. C. Hutchings, M. Sheik Bahae, D. J. Hagan, and E. W. Van Stryland, "Kramers-Kronig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1989 (1)

1986 (1)

P. B. Corkum and C. Rolland, "Supercontinuum generation in gases," Phys. Rev. Lett. 57, 2268-2272 (1986).
[CrossRef] [PubMed]

1985 (2)

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy bandgap dependence of two-photon absorption," Opt. Lett. 10, 490-492 (1985).
[CrossRef] [PubMed]

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation," Opt. Commun. 56, 67-72 (1985).
[CrossRef]

Appl. Phys. B (1)

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moleney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air," Appl. Phys. B 85, 531-538 (2006)
[CrossRef]

Chem. Commun. (Cambridge) (1)

S. Zheng, L. Beverina, S. Barlow, E. Zojer, J. Fu, L. A. Padilha, C. Fink, O. Kwon, Y. Yi, Z. Shuai, E. W. Van Stryland, D. J. Hagan, J. L. Bredas, and S. R. Marder, "High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges," Chem. Commun. (Cambridge) , 13, 1372-1374 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Negres, J. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe," IEEE J. Quantum Electron. 38, 1205-1216 (2002).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Opt. Commun. (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation," Opt. Commun. 56, 67-72 (1985).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik Bahae, D. J. Hagan, and E. W. Van Stryland, "Kramers-Kronig relations in nonlinear optics," Opt. Quantum Electron. 24, 1-30 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

P. B. Corkum and C. Rolland, "Supercontinuum generation in gases," Phys. Rev. Lett. 57, 2268-2272 (1986).
[CrossRef] [PubMed]

Other (2)

S. Ross, "A picosecond visible OPO as a tool for non-linear spectroscopy," Ph.D. dissertation (University of Central Florida, 1998).

R. Trebino, Frequency Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental configuration used for generating a stable, high-spectral-energy density, broadband, good spatial quality WLC source; NBFs are narrowband filters to monitor the beam spatial profile for different wavelengths of the WLC.

Fig. 2
Fig. 2

White-light continuum spectrum before (dashed curve) and after (solid curve) a 780 nm notch filter. The black circles connected by a solid curve are the available energy for the Z scan after each narrowband filter (right vertical axis).

Fig. 3
Fig. 3

Beam profiles corresponding to different wavelengths of the continuum.

Fig. 4
Fig. 4

(a) Pulsewidth measurement results for different wavelengths in the continuum transmitted by the NBFs. The autocorrelation is performed using: ●, a ZnS crystal and a Si detector; ○, a ZnSe crystal and a Si detector; ◼, a GaP detector; ▾, a GaP detector with 100 × gain; ▵, a GaP detector in an interferometric setup; and ◇, Grenouille (b) time-bandwidth product.

Fig. 5
Fig. 5

WLC Z-scan experimental setup: L: lens; M: mirror; WP: half-wave-plale; P: polarizer; FW: filter wheel; BS: beam splitter; D: detector; A: aperture; S: sample; the dotted Ms are removable mirrors for beam characterization.

Fig. 6
Fig. 6

(a) 2PA and (b) n 2 coefficients of ZnSe obtained from theory and from the experimental data fitting.

Fig. 7
Fig. 7

Z-scan data for 1 mm thickness ZnS sample at 400, 570, 620, 670, 750, and 800 nm (a) open and (b) closed aperture (the result of the division with open aperture). The last two graphs do not show open aperture curves as 2PA was not present at those wavelengths.

Fig. 8
Fig. 8

(a) 2PA and (b) n 2 coefficients of ZnS obtained from theory and from the experimental data fitting.

Fig. 9
Fig. 9

2PA spectrum and n 2 dispersion for sample 1 (upper right in figure). ○, 2PA measured by two-photon fluorescence; ▵, 2PA via single wavelength Z scan; ▴, 2PA via WLC Z-Scan; ∇, nonlinear refraction via single wavelength Z scan; ▾, nonlinear refraction via WLC Z scan. In the insets we show the linear absorption spectrum and the molecular structure [18].

Fig. 10
Fig. 10

2PA cross-section spectrum for organic dye 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ r = ω N k n 2 ,

Metrics