Abstract

We report a systematic study of all-normal-dispersion mode-locked fiber lasers. Spectral filtering of a chirped pulse in the cavity is a major component of the pulse shaping in these lasers. We identify the nonlinear phase shift accumulated by the pulse, spectral filter bandwidth, and group-velocity dispersion as the key parameters that determine the behavior and properties of these lasers. Trends in the performance as these parameters are varied are summarized. A wide range of pulse shapes and evolutions can occur. Experimental results from Yb-doped all-normal-dispersion fiber lasers agree reasonably well with the results of numerical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991).
    [CrossRef]
  3. B. Proctor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  5. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
    [CrossRef] [PubMed]
  6. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
    [CrossRef]
  7. A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski, "Generation of 60-nJ sub-40-fs pulses at 70MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
    [CrossRef]
  8. J. R. Buckley, F. Ö. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10nJ," Opt. Lett. 30, 1888-1890 (2005).
    [CrossRef] [PubMed]
  9. M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, "25nJ passively mode-locked fiber laser at 1080nm," in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.
  10. H. Lim and F. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  11. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  12. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  13. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. Wise, "Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
    [CrossRef]
  14. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  15. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of all-normal-dispersion femtosecond fiber lasers," in Conference On Lasers and Electro-Optics, 2007 OSA Technical Digest Series (Optical Society of America, 2007), paper CMU4.
  16. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  17. P. A. Bélanger, "Stable operation of mode-locked fiber lasers:similariton regime," Opt. Express 15, 11033-11041 (2007).
    [CrossRef] [PubMed]
  18. F. Ö. Ilday, "Theory and practice of high-energy femtosecond fiber lasers," Ph.D. dissertation (Cornell University, 2004).
  19. L. Hocking and K. Stewartson, "On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance," Proc. R. Soc. London, Ser. A 326, 289-313 (1972).
    [CrossRef]
  20. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys Rev. A, submitted for publication.
  21. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  22. K. Tamura and M. Nakazawa, "Optimizing power extraction in stretched-pulse fiber ring lasers," Appl. Phys. Lett. 67, 3691-3693 (1995).
    [CrossRef]

2007

2006

2005

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

J. R. Buckley, F. Ö. Ilday, T. Sosnowski, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10nJ," Opt. Lett. 30, 1888-1890 (2005).
[CrossRef] [PubMed]

2004

1995

K. Tamura and M. Nakazawa, "Optimizing power extraction in stretched-pulse fiber ring lasers," Appl. Phys. Lett. 67, 3691-3693 (1995).
[CrossRef]

1993

1991

1972

L. Hocking and K. Stewartson, "On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance," Proc. R. Soc. London, Ser. A 326, 289-313 (1972).
[CrossRef]

Appl. Phys. B

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

A. Fernandez, A. Verhoef, V. Pervak, G. Lermann, F. Krausz, and A. Apolonski, "Generation of 60-nJ sub-40-fs pulses at 70MHz repetition rate from a Ti:sapphire chirped pulse-oscillator," Appl. Phys. B 87, 395-398 (2007).
[CrossRef]

Appl. Phys. Lett.

K. Tamura and M. Nakazawa, "Optimizing power extraction in stretched-pulse fiber ring lasers," Appl. Phys. Lett. 67, 3691-3693 (1995).
[CrossRef]

J. Opt. Soc. Am. B

New J. Phys.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

L. Hocking and K. Stewartson, "On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance," Proc. R. Soc. London, Ser. A 326, 289-313 (1972).
[CrossRef]

Other

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys Rev. A, submitted for publication.

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of all-normal-dispersion femtosecond fiber lasers," in Conference On Lasers and Electro-Optics, 2007 OSA Technical Digest Series (Optical Society of America, 2007), paper CMU4.

M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, "25nJ passively mode-locked fiber laser at 1080nm," in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.

F. Ö. Ilday, "Theory and practice of high-energy femtosecond fiber lasers," Ph.D. dissertation (Cornell University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Typical numerical simulation result: (a) spectrum at the beginning of the first SMF, (b) spectrum at the beginning of the gain fiber, (c) spectrum at the end of the gain fiber, (d) spectrum at the end of the second SMF, (e) output spectrum; DDL, dispersion delay line.

Fig. 2
Fig. 2

Time domain evolution of the numerical simulation result in Fig. 1; SA, saturable absorber, SF, spectral filter.

Fig. 3
Fig. 3

Output spectrum with Φ N L : (a) 1 π , (b) 4 π , (c) 7 π , (d) 16 π .

Fig. 4
Fig. 4

Laser performance versus Φ N L : (a) pulse energy, (b) breathing ratio, (c) dechirped pulse duration, (d) chirp.

Fig. 5
Fig. 5

Output spectrum with spectral filter BW: (a) 25, (b) 15, (c) 12, (d) and 8 nm .

Fig. 6
Fig. 6

Laser performance versus spectral filter BW: (a) breathing ratio, (b) dechirped pulse duration, (c) chirp.

Fig. 7
Fig. 7

Output spectrum with GVD: (a) 0.52, (b) 0.31, (c) 0.24, (d) and 0.10 ps 2 .

Fig. 8
Fig. 8

Laser performance versus GVD: (a) breathing ratio, (b) dechirped pulse duration, (c) chirp.

Fig. 9
Fig. 9

Output spectrum versus laser parameters.

Fig. 10
Fig. 10

Temporal evolution of two extreme cases. Top: temporal evolution of A and B in Fig. 9, middle: spectra of A mode at various locations, bottom: spectra of B mode at various locations.

Fig. 11
Fig. 11

Schematic of the experimental setup; PBS, polarization beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; WDM, wavelength division multiplexer; DDL, dispersion delay line.

Fig. 12
Fig. 12

Experimental results. Top: simulated output spectrum with Φ N L : (a) 1 π , (b) 3 π , (c) 4 π , (d) 8 π ; middle: experimental output spectrum with approximated Φ N L : (e) 1 π , (f) 3 π , (g) 4 π , (h) 8 π ; bottom: corresponding experimental dechirped interferometric ACs.

Fig. 13
Fig. 13

Experimental and numerically simulated laser performance versus approximated Φ N L ; dots: experiment; curves: numerical simulation; (a) pulse energy before the NPE port, (b) breathing ratio, (c) dechirped pulse duration, (d) chirp.

Fig. 14
Fig. 14

Laser operating regimes according to the net cavity dispersion and the existence of a dispersion map.

Fig. 15
Fig. 15

Schematic of the experimental setup with two output ports; PBS, polarization beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; WDM, wavelength division multiplexer; DDL, dispersion delay line.

Fig. 16
Fig. 16

Experimental result of the laser with two output ports. Output 1: (a) spectrum, (b) dechirped interferometric AC; output 2: (c) spectrum, (d) dechirped interferometric AC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( z , τ ) z + i β 2 2 2 A ( z , τ ) τ 2 = i γ A ( z , τ ) 2 A ( z , τ ) + g ( E pulse ) A ( z , τ ) .
g ( E pulse ) = g o 1 + E pulse E sat .
Φ N L approx = n = 1 3 γ n ( I peak ) n L n .

Metrics