Abstract

We have observed the propagation of an approximately 35 ns long light pulse with a negative group velocity through a laser-cooled 85Rb atomic medium. The anomalous dispersion results from linear atom-light interaction and is unrelated to long-lived ground-state coherences often associated with fast light in atomic media. The observed negative group velocity (−c/360) in the Rb magneto-optical trap for a pulse attenuated by less than 50% is in good agreement with the value of dispersion measured independently by a rf heterodyne method. The spectral region of anomalous dispersion is between 15 and 40 MHz, which is an order of magnitude wider than that typically associated with ground-state coherences.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription