Abstract

Slow and fast light enables key functionality in various rf applications and all-optical networks. Semiconductor-based schemes offer electrical control of velocity at very high bandwidths in an extremely compact device. Furthermore, they operate at room temperature and can be easily integrated into various optical systems. Ultrafast nonlinear processes in semiconductor optical amplifiers (SOAs) have been used to achieve tunable slow and fast light in the terahertz bandwidth. For a 700fs pulse, we show an electrically and optically controllable advance of 1.9ps corresponding to an advance–bandwidth product (ABP) of 2.5. Furthermore, by leveraging self-phase modulation in these devices, we extend the performance to an ABP of 3.7. We develop comprehensive theory using a density matrix approach to explain the experimental results. Our results show that an ultrashort pulse propagating through the SOA experiences nonlinear index change due to spectral-hole burning and wave mixing between different spectral components. We derive analytical expressions for the nonlinear index induced by these ultrafast processes and numerically solve the propagation of an ultrashort pulse through the SOA. Our theoretical predictions agree very well with our experimental results. Finally, we show fast light for two ultrashort pulses separated by 7.2ps, which demonstrates the feasibility of this scheme at high bit rates.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
    [CrossRef]
  2. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Progress in Optics, Vol. 43E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
    [CrossRef]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  4. F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
    [CrossRef]
  5. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
    [CrossRef]
  6. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb/s optical time-division multiplexed networks,” J. Lightwave Technol. 20, 2086-2100 (2002).
    [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  9. P. Palinginis, F. G. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
    [CrossRef] [PubMed]
  10. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
    [CrossRef] [PubMed]
  11. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  12. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
    [CrossRef]
  13. H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88, 061102 (2006).
    [CrossRef]
  14. S. Sarkar, Y. Guo, and H. Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845-2850 (2006).
    [CrossRef] [PubMed]
  15. M. V. Poel, J. Mørk, and M. J. Hvam, “Controllable delay of ultrashort pulses in a quantum dot optical amplifier,” Opt. Express 13, 8032-8037 (2005).
    [CrossRef] [PubMed]
  16. F. G. Sedgwick, B. Pesala, J. Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747-753 (2007).
    [CrossRef] [PubMed]
  17. J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).
  18. A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
    [CrossRef]
  19. A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast nonlinear group index in semiconductor optical amplifiers for slow and fast light,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMD2.
  20. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005).
    [CrossRef]
  21. J. Mork and A. Mecozzi, “Non-adiabatic effects in semiconductor waveguides,” in Proc. SPIE 3944, 658-672 (2000).
    [CrossRef]
  22. G. P. Agrawal and A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  23. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
    [CrossRef]
  24. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]

2007 (4)

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

F. G. Sedgwick, B. Pesala, J. Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747-753 (2007).
[CrossRef] [PubMed]

2006 (4)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

S. Sarkar, Y. Guo, and H. Wang, “Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells,” Opt. Express 14, 2845-2850 (2006).
[CrossRef] [PubMed]

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

2005 (4)

2004 (1)

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

2003 (2)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

J. Mork and A. Mecozzi, “Non-adiabatic effects in semiconductor waveguides,” in Proc. SPIE 3944, 658-672 (2000).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

1996 (1)

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

1994 (1)

A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

1989 (1)

G. P. Agrawal and A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Berg, T. W.

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Progress in Optics, Vol. 43E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

Chang, Y. H.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Chang-Hasnain, C. J.

F. G. Sedgwick, B. Pesala, J. Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747-753 (2007).
[CrossRef] [PubMed]

P. Palinginis, F. G. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast nonlinear group index in semiconductor optical amplifiers for slow and fast light,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMD2.

Chuang, S. L.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Crankshaw, S.

Delfyett, P. J.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Dienes, A.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Dijaili, S.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Fazal, I.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Fejer, M. M.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Progress in Optics, Vol. 43E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Guo, Y.

Hamilton, S. A.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Heritage, J. P.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Hong, M. Y.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Hvam, M. J.

Ippen, E. P.

Khurgin, J. B.

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Ko, W. S.

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Ku, P.-C.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Lin, J. Y.

Lipson, M.

Mark, J.

A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

Mecozzi, A.

J. Mork and A. Mecozzi, “Non-adiabatic effects in semiconductor waveguides,” in Proc. SPIE 3944, 658-672 (2000).
[CrossRef]

Moewe, M.

Mork, J.

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
[CrossRef]

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

J. Mork and A. Mecozzi, “Non-adiabatic effects in semiconductor waveguides,” in Proc. SPIE 3944, 658-672 (2000).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

Mørk, J.

Murphy, T. E.

Nielsen, M. L.

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

Ohman, F.

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
[CrossRef]

Okawachi, Y.

Olsson, A.

G. P. Agrawal and A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Palinginis, P.

Patterson, F. G.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

Pesala, B.

F. G. Sedgwick, B. Pesala, J. Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, “THz-bandwidth tunable slow light in semiconductor optical amplifiers,” Opt. Express 15, 747-753 (2007).
[CrossRef] [PubMed]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast nonlinear group index in semiconductor optical amplifiers for slow and fast light,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMD2.

Poel, M. V.

Robinson, B. S.

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Sarkar, S.

Savage, S. J.

Schweinsberg, A.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Sedgwick, F. G.

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

Su, H.

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Tucker, R. S.

Uskov, A.

A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

Uskov, A. V.

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast nonlinear group index in semiconductor optical amplifiers for slow and fast light,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMD2.

Wang, H.

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Willner, A. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Xu, Q.

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Yan, L. S.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Yang, J. Y.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Yvind, K.

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
[CrossRef]

Zhang, B.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Zhao, X.

Appl. Phys. Lett. (1)

H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Uskov, J. Mork, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

G. P. Agrawal and A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, S. Dijaili, and F. G. Patterson, “Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 2, 523-539 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861-863 (2007).
[CrossRef]

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

IEICE Trans. Electron. (1)

J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, “The role of fast carrier dynamics in SOA based devices,” IEICE Trans. Electron. E87-C, 1126-1133 (2004).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres persecond in ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Opt. Express (5)

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884-1897 (2003).
[CrossRef]

Proc. SPIE (1)

J. Mork and A. Mecozzi, “Non-adiabatic effects in semiconductor waveguides,” in Proc. SPIE 3944, 658-672 (2000).
[CrossRef]

Science (2)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Progress in Optics, Vol. 43E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

A. V. Uskov, F. G. Sedgwick, B. Pesala, and C. J. Chang-Hasnain, “Ultrafast nonlinear group index in semiconductor optical amplifiers for slow and fast light,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic showing the response of a semiconductor medium biased in a gain region to an ultrashort pulse. (a) An ultrashort pulse burns a hole in the carrier distribution. (b) Carrier–carrier scattering and carrier–phonon scattering are ultrafast processes that restore the carriers to intraband equilibrium on a picosecond time scale. (c) Carrier–carrier scattering causes carriers to reach intraband equilibrium at a temperature higher than the lattice temperature. (d) Carrier–phonon scattering then relaxes the carriers to lattice temperature. (e) Electrons and holes eventually reach equilibrium through carrier injection.

Fig. 2
Fig. 2

Experimental setup to realize fast light in semiconductor optical amplifiers. Output from the mode-locked laser is split into a reference (99%) and a signal (1%). The time shift of the signal is controlled by changing the SOA bias. As the SOA gain is increased by increasing the bias, the pulse experiences an advance. Similarly, when the SOA bias is decreased below transparency, the pulse experiences a delay.

Fig. 3
Fig. 3

Cross-correlation traces as the SOA current is varied. Cross-correlation traces appear broader than the actual pulses due to the finite width of the reference ( 700 fs ) . A large advance of 1.9 ps is observed for a 700 fs pulse as the SOA current is increased from transparency ( 50 mA ) to maximum gain ( 200 mA ) . This corresponds to an ABP of 2.5.

Fig. 4
Fig. 4

Amplitude change and pulse broadening as the SOA current is varied. Amplitude change as the current is increased from 50 to 200 mA is less than 11 dB . The amplitude variation is much less than the linear gain ( 20 dB ) because the pulses saturate the amplifier at a current of 100 mA . Pulses at the output are broader due to dispersion in various fiber-based components. However, pulse broadening variation due to the fast-light effect is less than 50%.

Fig. 5
Fig. 5

Cross-correlation traces for a 600 fs input pulse. A large delay of 0.75 ps is observed as the SOA current is decreased from transparency ( 50 mA ) to the loss region ( 20 mA ) . As the SOA current is increased from transparency ( 50 mA ) to the gain region ( 100 mA ) , a large advance of 0.77 ps is observed. A total time shift of 1.52 ps corresponds to an ABP of 2.5.

Fig. 6
Fig. 6

Time traces for a 700 fs input pulse at a SOA bias of 100 mA as the input power is increased. An ABP of 1.3 is achieved as the pulse energy is increased from 1 fJ to 1 pJ , demonstrating the feasibility of optical tuning.

Fig. 7
Fig. 7

Cross-correlation traces for a 600 fs pulse passing through two cascaded SOAs. The numbers indicate the bias current of each SOA in mA. An advance of 2 ps is observed as the bias current is varied continuously corresponding to an ABP of 3.3. Comparing this result with the earlier reported ABP of 2.5 for a single SOA demonstrates the scalability of this scheme. Increasing the current of the SOAs to larger values ( > 100 mA ) results in pulse distortion due to the high power of the signal pulse at the input of the second SOA.

Fig. 8
Fig. 8

Experimental setup to investigate the scalability of this scheme using cascaded SOAs to achieve a larger pulse advance. By using 90:10 splitters before and after the SOA, the signal pulse can be made to go through the SOA multiple times. By adjusting the delay line in the reference arm, we can selectively measure the advance of a pulse that has gone through multiple times. Attenuation of the variable attenuator is adjusted so as to prevent lasing in the loop.

Fig. 9
Fig. 9

(a) Time traces for a pulse propagating through the SOA once (single pass) as the SOA current is increased. A maximum advance of 0.64 ps is observed. (b) Advance for a pulse propagating through the SOA twice (double pass). An advance of 1.17 ps for this case is roughly twice that of a single-pass pulse. However, pulse broadening is also roughly twice that of a single-pass pulse. Increasing the current beyond 100 mA causes lasing in the loop due to ASE. By adding optical filters and dispersion compensators in the loop, the pulse advance can be increased while reducing the pulse broadening.

Fig. 10
Fig. 10

Results of the simulation for a 700 fs pulse propagating through a SOA with a linear gain of 30 dB . A dephasing time of 100 fs and a carrier heating time of 650 fs is used in this simulation. When we neglect the contribution due to nonlinear effects, we see an advance of 0.5 ps corresponding to an ABP of only 0.7. Modification of the model to include nonlinear gain decreases the advance to 0.2 ps due to nonlinear gain suppression. However, including the gain and index change due to SHB and CH gives a large advance of 1.4 ps (ABP 2).

Fig. 11
Fig. 11

Spectra for a 370 fs pulse for various SOA currents at an input pulse energy of 4 pJ . An increasing SOA current causes a redshift for the pulse due to self-phase modulation. At a SOA current of 100 mA , a redshift of 6 nm is observed. The oscillatory structure observed in the spectrum at high currents is typical of nonlinear processes.

Fig. 12
Fig. 12

Cross-correlation traces for a 190 fs pulse as a function of SOA current. We observed a large tunable advance of 0.71 ps corresponding to an ABP of 3.7. Amplitude variation is less than 10 dB and pulse broadening is less than 100% as the current is varied.

Fig. 13
Fig. 13

Advance and ABP as the pulse width is varied by an order of magnitude ( 86 fs to 1 ps ) . Peak power of the pulse is kept constant as the pulse width is varied. As expected, ABP increases with decreasing pulse width. For an 86 fs pulse, we observe an ABP of 6.5. However, maximum pulse broadening for this case is 250% due to the large amount of fiber in our EDFA. Furthermore, linear chirpers employed in this scheme cannot exactly compensate for the nonlinear chirp induced by the SOA. Pulse broadening can be reduced by employing tailored chirpers.

Fig. 14
Fig. 14

Results of the simulation (dotted curves) for a 190 fs pulse as the SOA current is increased from transparency ( 50 mA ) to maximum gain ( 300 mA ) . A tunable advance of 0.71 ps is obtained corresponding to an ABP of 3.7, which agrees very well with our experimental results (solid curves).

Fig. 15
Fig. 15

Cross-correlation traces for two pulses entering the SOA. The prepulse is separated from the main pulse by 7.2 ps . As the SOA current is increased, we observe a large advance for both the pulses.

Fig. 16
Fig. 16

Cross-correlation traces for the main pulse with increasing current. Even in the presence of a prepulse, a large advance of 1.72 ps corresponding to an ABP of 2.72 is observed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v g = c n g ,
Δ n g = Δ n g lin + Δ n g SHB + Δ n g CH ,
Δ n g SHB = Δ n g SHB - DIP + Δ n g SHB - FWM ,
Δ n g SHB - DIP = τ 2 c g lin ϵ SHB S 4 ,
Δ n g SHB - FWM = 3 τ 2 c g lin ϵ SHB S 4 ,
Δ n g CH = τ h c g lin ϵ CH S ,
T adv = T NL + T SPM ,

Metrics