Abstract

We investigate how the use of slow-light methods can enhance the performance of various types of spectroscopic interferometers under practical conditions. We show that, while in ideal cases the enhancement of the spectral resolution is equal to the magnitude of the group index of the slow-light medium, the ratio between the associated gain or loss and the group index of the slow-light medium actually determines the spectral resolution under more-general conditions. Moreover, the dispersion of this ratio leads to frequency-dependent spectral resolution, which limits the useful working bandwidth of the interferometer. We also evaluate the performance of interferometers using three specific slow-light processes in terms of the achievable spectral resolution and the effective working finesse. We show that the spectral resolution is typically limited by the characteristic linewidth of each slow-light process and that there is no fundamental upper limit for the effective working finesse.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
    [CrossRef]
  2. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  5. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
    [CrossRef] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  7. M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  8. P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
    [CrossRef]
  9. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
    [CrossRef]
  10. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
    [CrossRef]
  11. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
    [CrossRef] [PubMed]
  12. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  13. R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403-2411 (2007).
    [CrossRef]
  14. S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
    [CrossRef]
  15. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915-917 (2007).
    [CrossRef] [PubMed]
  16. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
    [CrossRef] [PubMed]
  17. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
    [CrossRef]
  18. C. Roychoudhuri, “Multiple-beam interferometers,” in Optical Shop Testing, D.Malacara, ed. (Wiley, 1992), p. 213.
  19. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  20. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  21. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
    [CrossRef] [PubMed]
  22. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
    [CrossRef]
  23. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]

2007

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915-917 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

2006

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[CrossRef]

2005

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2002

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

1999

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

1997

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915-917 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[CrossRef]

Cardoso, G.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Chang-Hasnain, C.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Chuang, S.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Dawes, A. M.

Dudley, C. C.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Gaeta, A.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Gauthier, D. J.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915-917 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Gopal, V.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Herráez, M.

M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Hollberg, L.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Ku, P.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Messal, M.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Nair, R.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Narum, P.

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Neifeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[CrossRef]

Pant, R.

Pati, G.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Pati, G. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Pradhan, P.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Robinson, H. G.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Roychoudhuri, C.

C. Roychoudhuri, “Multiple-beam interferometers,” in Optical Shop Testing, D.Malacara, ed. (Wiley, 1992), p. 213.

Salit, K.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Salit, M.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Scully, M. O.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Shahriar, M. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Shahriar, S. M.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Sharping, J.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shi, Z.

Song, K. Y.

M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Stenner, M. D.

Thévenaz, L.

M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Tripathi, R.

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Velichansky, V. L.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Vudyasetu, P. K.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Zhu, Z.

Zibrov, A. S.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Appl. Phys. Lett.

M. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Electron. Lett.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Europhys. Lett.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

J. Mod. Opt.

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006).
[CrossRef]

Phys. Rev. Lett.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959-2962 (1997).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backwards pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006).
[CrossRef] [PubMed]

Other

C. Roychoudhuri, “Multiple-beam interferometers,” in Optical Shop Testing, D.Malacara, ed. (Wiley, 1992), p. 213.

R. W. Boyd and D. J. Gauthier, “'Slow' and 'fast' light,” in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), pp. 497-530.
[CrossRef]

S. M. Shahriar, G. Pati, V. Gopal, R. Tripathi, G. Cardoso, P. Pradhan, M. Messal, and R. Nair, “Precision rotation sensing and interferometry using slow light,” in Quantum Electronics and Laser Science Conference (QELS), (2005), paper JWB97.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a M–Z interferometer containing a slow-light medium in one arm.

Fig. 2
Fig. 2

Schematic diagram of a slow-light F–P interferometer (left). A close look at the multiple beam interference within the F-P etalon (right).

Fig. 3
Fig. 3

Schematic diagram of a slow-light FT interferometer. The reduced group index of the variable slow-light medium can be increased from zero to a maximum value.

Fig. 4
Fig. 4

(a) The reduced group index n g and gain coefficient g and (b) the characteristic spectral resolution δ ν c as functions of the normalized frequency detuning from the resonance center for a single-Lorentzian-gain-line medium.

Fig. 5
Fig. 5

(a) The reduced group index and absorption coefficient as functions of detuning for a double-absorption-line medium with Δ = 4 γ . (b) The characteristic spectral resolution at ν = 0 . and (c) The working finesse as functions of the normalized half separation between the two resonance centers.

Fig. 6
Fig. 6

(a) Energy-level diagram of a Λ-type EIT system. (b) The reduced group index and absorption coefficient at the center frequency. (c) The characteristic spectral resolution at ν = 0 . (d) The working finesse plotted as functions of the normalized pump Rabi frequency for an EIT medium with γ ¯ = 100 . The dots are results using the approximate expression of Eqs. (43, 46), and the solid lines are results based on the analytical expression of Eq. (38).

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

T = 1 4 ( 1 + e α L + 2 e 0.5 α L cos Δ ϕ ) ,
Δ ϕ ( ν ) = 2 π ν c n ( ν ) L ,
d Δ ϕ d ν = d d ν ( 2 π ν n ( ν ) L c ) = 2 π L c ( n + ν d n d ν ) = 2 π L n g c ,
δ ν min = c 2 L n g .
V I out , max I out , min I out , max + I out , min = 2 e 0.5 α L 1 + e α L .
α L 1 .
δ ν min = c α 2 n g .
T ( θ ) T s 2 T L ( θ ) ( 1 R s T L ( θ ) ) 2 1 1 + F 2 sin 2 Δ ϕ ( θ ) ,
θ m = cos 1 ( 1 ( M m ) λ 2 L n ) ,
d θ m d λ = M m 2 L sin θ m ( 1 n λ d n n 2 d λ ) = ( M m ) n g 2 n 2 L sin θ m .
δ θ m = λ π L n sin θ m F .
δ λ m = d λ d θ δ θ m = 2 n λ ( M m ) n g π F .
δ λ min 2 n λ M n g π F = λ 2 n g L π F .
δ λ min λ 2 ( 1 + α L R s ) 2 n g L π = λ 2 ( 1 R s ) 2 n g L π + λ 2 α 2 n g π ,
δ ν min = c ( 1 R s ) 2 π n g L + c α 2 π n g .
δ ν min c α 2 π n g .
I out ( τ g ) = R { I in ( ν 0 + ν ) e i 2 π ν τ g d ν } ,
δ ν 1 = 1 2 τ g , max = c 2 n g , max L .
I out ( τ g ) = R { I in ( ν 0 + ν ) e α ( ν 0 + ν ) 2 L e i 2 π ν τ g d ν } .
I out = R { e 0.5 α ( ν 1 ) L e i 2 π ( ν 1 ν 0 ) τ g } .
I in = FT { R { e 0.5 α ( ν 1 ) L e i 2 π ( ν 1 ν 0 ) τ g } } = e α ( ν 1 ) L 2 τ g τ g e i 2 π τ g ( ν ν 1 + ν 0 ) d τ g = e σ τ g e i 2 π τ g ν d τ g ,
I in ( ν ) = 0 e σ τ g e i 2 π τ g ν d τ g + 0 e σ τ g e i 2 π τ g ν d τ g = 1 σ + i 2 π ν + 1 σ i 2 π ν = C ν 2 + γ eff 2 ,
γ eff = σ 2 π = c α 4 π n g .
δ ν min = max [ c 2 n g , max L , c α 2 π n g ] .
g ( ν ) = g 0 γ 2 ν 2 + γ 2 ,
n ( ν ) = n ( 0 ) + g 0 2 k 0 γ ν ν 2 + γ 2 ,
n g ( ν ) = c g 0 γ 4 π ν 2 + γ 2 ( ν 2 + γ 2 ) 2 ,
g ( ν ) n g ( ν ) = 4 π γ c ν 2 + γ 2 ν 2 γ 2 .
δ ν c ( ν = 0 ) = c α ( 0 ) 2 π n g ( 0 ) = 2 γ .
Δ ν w = 2 γ 3 .
F w = 1 3 .
α ( ν ) = α 0 [ γ 2 ( ν Δ ) 2 + γ 2 + γ 2 ( ν + Δ ) 2 + γ 2 ] ,
n ( ν ) = α 0 2 k 0 { γ ( ν Δ ) ( ν Δ ) 2 + γ 2 + γ ( ν + Δ ) ( ν + Δ ) 2 + γ 2 } ,
n g = c α 0 γ 4 π [ ( ν Δ ) 2 γ 2 [ ( ν Δ ) 2 + γ 2 ] 2 + ( ν + Δ ) 2 γ 2 [ ( ν + Δ ) 2 + γ 2 ] 2 ] .
n g ( ν ) α ( ν ) = c 4 π [ 1 γ + 2 γ ν 2 + γ 2 + Δ 2 2 γ ( ν Δ ) 2 + γ 2 2 γ ( ν + Δ ) 2 + γ 2 ] .
δ ν c ( ν = 0 ) = c α ( 0 ) 2 π n g ( 0 ) = 2 γ Δ 2 + γ 2 Δ 2 γ 2 .
F w Δ γ .
n ̃ ( ν ) = α 0 2 k 0 γ b a ( ν + i γ c a ) Ω p 2 ( ν + i γ b a ) ( ν + i γ c a ) ,
α ( ν ) α 0 1 + Ω ¯ p 2 ( 1 + ν 2 A 2 ) ,
n ( ν ) 1 + α 0 c 4 π ν 0 B ν 1 + Ω ¯ p 2 ( 1 + ν 2 C 2 ) ,
n g ( ν ) = α 0 c 4 π B Ω ¯ p 2 + 1 ( 1 + 3 ν 2 C 2 ) .
α ( ν ) n g ( ν ) = 4 π C 2 c B A 2 ( A 2 + ν 2 ) ( C 2 + 3 ν 2 ) .
δ ν c ( ν = 0 ) = c α ( 0 ) 2 π n g ( 0 ) = 2 B = 2 γ c a Ω ¯ p 2 + 1 Ω ¯ p 2 γ ¯ 1 .
A 2 + ( 0.5 Δ ν w ) 2 C 2 + 3 ( 0.5 Δ ν w ) 2 = 2 A 2 C 2 .
Δ ν w = 2 A 2 C 2 C 2 6 A 2 2 γ b a Ω ¯ p γ ¯ ( γ ¯ 5 ) .
F w = B A 2 C 2 C 2 6 A 2 = Ω ¯ p 2 + 1 Ω ¯ p 2 γ ¯ 1 γ ¯ γ ¯ 5 Ω ¯ p .

Metrics