Abstract

We investigate how the use of slow-light methods can enhance the performance of various types of spectroscopic interferometers under practical conditions. We show that, while in ideal cases the enhancement of the spectral resolution is equal to the magnitude of the group index of the slow-light medium, the ratio between the associated gain or loss and the group index of the slow-light medium actually determines the spectral resolution under more-general conditions. Moreover, the dispersion of this ratio leads to frequency-dependent spectral resolution, which limits the useful working bandwidth of the interferometer. We also evaluate the performance of interferometers using three specific slow-light processes in terms of the achievable spectral resolution and the effective working finesse. We show that the spectral resolution is typically limited by the characteristic linewidth of each slow-light process and that there is no fundamental upper limit for the effective working finesse.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription