Abstract

Stimulated Brillouin scattering (SBS) generated from noise in small-core photonic crystal fibers (PCFs) exhibits a strong dependence on pump polarization. The polarization dependence of two small-core PCFs is investigated, yielding unexpected results. Both fibers exhibit birefringence resulting in a 90° polarization dependence for the SBS and a 3dB difference in the SBS threshold between polarizations corresponding to minimum and maximum SBS, respectively. Surprisingly, the transmission of the smaller-core fiber also exhibits a 180° polarization dependence at lower powers due to polarization-dependent loss.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  2. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  3. S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.
  4. M. J. Steel, T. P. White, C. Martinijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  5. M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technol. Lett. 13, 1313-1315 (2001).
    [CrossRef]
  6. T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.
  7. A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).
  8. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582-593 (2008).
    [CrossRef]
  9. I. K. Hwang, Y. J. Lee, and Y. H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Opt. Express 11, 2799-2806 (2003).
    [CrossRef] [PubMed]
  10. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).
    [CrossRef]
  11. J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
    [CrossRef]
  12. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).
  13. W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
    [CrossRef]
  14. M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photonics Technol. Lett. 15, 691-693 (2003).
    [CrossRef]
  15. Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis,” Opt. Express 13, 225-235 (2005).
    [CrossRef] [PubMed]
  16. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
    [CrossRef]

2008

2006

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

2005

Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis,” Opt. Express 13, 225-235 (2005).
[CrossRef] [PubMed]

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

2003

I. K. Hwang, Y. J. Lee, and Y. H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Opt. Express 11, 2799-2806 (2003).
[CrossRef] [PubMed]

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photonics Technol. Lett. 15, 691-693 (2003).
[CrossRef]

2002

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).

2001

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

M. J. Steel, T. P. White, C. Martinijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488-490 (2001).
[CrossRef]

M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

2000

1979

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).
[CrossRef]

Arriaga, J.

Berdine, R. W.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Berghams, F.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Berthelot, L.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

Botten, L. C.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

Chartier, T.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Delavaux, J.

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Gisin, N.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Hideur, A.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Hwang, I. K.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

Koshiba, M.

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582-593 (2008).
[CrossRef]

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photonics Technol. Lett. 15, 691-693 (2003).
[CrossRef]

M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

Lai, Y.

Laude, V.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Lee, Y. H.

Lee, Y. J.

Legré, M.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Lempereur, S.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Libori, S. B.

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Liu, Y. C.

Ludvigsen, H.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Makara, M.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Mangan, B. J.

Martinijn de Sterke, C.

Martynkien, T.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

McElhenny, J. E.

McPhedran, R. C.

Mélin, G.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Mergo, P.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Nasilowski, T.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Niemi, T.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Olszewski, J.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Ortigosa-Blanch, A.

Pagnoux, D.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Pattnaik, R. K.

Petersson, A.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Peyrilloux, A.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Roh, W. B.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Roy, P.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

Russell, P. St. J.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

Russell, T. H.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Saitoh, K.

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582-593 (2008).
[CrossRef]

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photonics Technol. Lett. 15, 691-693 (2003).
[CrossRef]

M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

Sanchez, A. D.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Scholder, F.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Shay, T. M.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Simonsen, H. R.

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

Skovgaard, P. M. W.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Spring, J. B.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Statkiewicz, G.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Steel, M. J.

Stolen, R. H.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).
[CrossRef]

Szpulak, M.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Thienpont, H.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Toulouse, J.

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582-593 (2008).
[CrossRef]

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).

Urbanczyk, W.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Wadsworth, W. J.

Ward, B. G.

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Wegmuller, M.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

White, T. P.

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Wojcik, J.

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

Yeniay, A.

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).

IEEE J. Quantum Electron.

R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157-1160 (1979).
[CrossRef]

IEEE Photon. Technol. Lett.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

IEEE Photonics Technol. Lett.

M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

M. Koshiba and K. Saitoh, “Polarization-dependent confinement losses in actual holey fibers,” IEEE Photonics Technol. Lett. 15, 691-693 (2003).
[CrossRef]

in International Conference on Transparent Optical Networks

W. Urbanczyk, M. Szpulak, G. Statkiewicz, T. Martynkien, J. Olszewski, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghams, and H. Thienpont, “Polarizing properties of photonic crystal fibers,” in International Conference on Transparent Optical Networks 2, 59-63 (2006).
[CrossRef]

J. Lightwave Techol.

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Techol. 20, 1425-1432 (2002).

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Techol. 21, 536-539 (2003).

J. Opt. Soc. Am. B

Nat. Phys.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, “Comparison of stimulated Brillouin scattering thresholds and spectra in non-polarization-maintaining and polarization-maintaining passive fibers,” Proc. SPIE 5708, 147-156 (2005).
[CrossRef]

Other

S. B. Libori, J. Broeng, E. Knudsen, A. Bjarklev, and H. R. Simonsen, “High-birefringent photonic crystal fiber,” in Proceedings of the Optical Fiber Communication Conference, Vol. 54 of OSA Proceedings Series (Optical Society of America 2001) Paper TuM2.

T. Niemi, H. Ludvigsen, F. Scholder, M. Legré, M. Wegmuller, N. Gisin, J. R. Jensen, A. Petersson, and P. M. W. Skovgaard, “Polarization properties of single-moded, large-mode area photonic crystal fibers,” in 28th European Conference on Optical Communication (IEEE, 2002), pp. 1-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulations of fundamental mode of the (a) RB65 and (b) CF fibers using FemSIM.

Fig. 2
Fig. 2

Configuration of experimental setup to study polarization dependence of SBS. The component in the dotted box was used only to image the fiber tip.

Fig. 3
Fig. 3

Brillouin signal in the RB65 for an input power of 23.6 dBm and polarization angles of 13° (solid curve) corresponding to maximum SBS and 28 ° (dashed curve) corresponding to minimum SBS.

Fig. 4
Fig. 4

(a) Peak and (b) transmitted powers vs. input power for the RB65 fiber for input polarization angles of 13° and 108° (squares) corresponding to maximum SBS and 60° and 28 ° (circles) corresponding to minimum SBS. The longer dashed line corresponds the power used in Fig. 3 above and the two shorter dashed lines to the powers used in Fig. 5 below.

Fig. 5
Fig. 5

(a) Polarization dependence of SBS in RB65 for two powers, 20.6 dBm (circles) and 21.6 dBm (squares), and (b) the input polarization angles resulting in maximum (solid lines) and minimum (dashed lines) SBS plotted on the image of the fiber tip.

Fig. 6
Fig. 6

Brillouin signal in the CF for an input power of 24.6 dBm and polarization angles of 39 ° (solid lines) corresponding to maximum SBS and 8° (dashed lines) corresponding to minimum SBS.

Fig. 7
Fig. 7

(a) Peak and (b) transmitted powers vs. input power for the CF fiber for input polarization angles of 39° and 53° (squares) corresponding to maximum SBS and 8° and 97° (circles) corresponding to minimum SBS. The dashed lines correspond to the powers used in Fig. 8a, 9a.

Fig. 8
Fig. 8

(a) Polarization dependence of SBS in CF for two powers, 22.6 dBm (circles) and 24.6 dBm (squares), and (b) the input polarization angles resulting in maximum (solid lines) and minimum (dashed lines) SBS plotted on the image of the fiber tip.

Fig. 9
Fig. 9

Polarization dependence of the transmitted power in CF for (a) 22.6 dBm (circles) and 24.6 dBm (squares) and (b) 23.9 dBm (circles) and 26.2 dBm (squares), taken at a different time with a different fiber orientation than previous data in the paper.

Fig. 10
Fig. 10

SEM images of the (a) RB65 and (b) CF fibers. The dotted line is the fast axis and the dashed line is the slow axis.

Fig. 11
Fig. 11

(a) Peak vs. input power for an elliptical core fiber for input polarization angles of along the major and minor axes (squares) corresponding to maximum SBS and at 53° (circles) corresponding to minimum SBS and (b) the polarization dependence of SBS for two powers, 25 dBm (circles) and 30 dBm (squares).

Tables (1)

Tables Icon

Table 1 Fiber Parameters and Simulation Results at 1550 nm

Metrics