Abstract

We studied the nonstationary phenomena for the saturated absorption spectra peaks of the Rb87 D2 line by varying the diameter and the intensity of a pump laser beam. We found that the dependence of the magnitude of the signals on the variation of the beam diameter was almost equivalent to that of the pump beam intensity both experimentally and theoretically. However, we observed that the signals for the cycling transition line Fg=2Fe=3 were different from each other, which could be explained by the saturation effect. We compared the experimental results with theoretical calculations based on the rate equation model. We observed good agreement between them.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy (Springer, 1998).
  2. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).
  3. W. R. Bennett, Jr., “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580-593 (1962).
    [CrossRef]
  4. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
    [CrossRef]
  5. H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
    [CrossRef]
  6. S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. Part 1 24, 1-7 (1985).
    [CrossRef]
  7. R. Grimm and J. Mlynek, “Light-pressure-induced nonlinear dispersion in a Doppler-broadened medium: theory and experimental proposal,” J. Opt. Soc. Am. B 5, 1655-1660 (1988).
    [CrossRef]
  8. R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
    [CrossRef] [PubMed]
  9. K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
    [CrossRef]
  10. O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
    [CrossRef]
  11. S. Nakayama, “Optical pumping effects in high resolution laser spectroscopy,” Phys. Scr. T70, 64-74 (1997).
    [CrossRef]
  12. H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).
  13. K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
    [CrossRef]
  14. A. Banerjee and V. Natarajan, “Saturated-absorption spectroscopy: eliminating crossover resonances by use of copropagating beams,” Opt. Lett. 28,1912-1914 (2003).
    [CrossRef] [PubMed]
  15. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631-637 (2004).
    [CrossRef]
  16. L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
    [CrossRef]
  17. A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
    [CrossRef]
  18. W. Gawlik, “Nonstationary effects in velocity-selective optical pumping,” Phys. Rev. A 34, 3760-3769 (1986).
    [CrossRef] [PubMed]
  19. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
    [CrossRef]
  20. J. E. Thomas and W. W. Quivers, Jr., “Transit-time effects in optically pumped coupled three-level systems,” Phys. Rev. A 22, 2115-2121 (1980).
    [CrossRef]
  21. J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
    [CrossRef]
  22. C. M. Klimcak and J. C. Camparo, “Optical-pumping dips in a homogeneously broadened fluorescence line,” Phys. Rev. A 30, 1791 (1984).
    [CrossRef]
  23. G. Moon and H. R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294-298 (2008).
    [CrossRef]
  24. G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
    [CrossRef]
  25. M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
    [CrossRef]
  26. G. Moon and H. R. Noh, “Theoretical calculation of the saturated absorption spectrum for a multilevel atom,” J. Korean Phys. Soc. 50, 1037-1043 (2007).
    [CrossRef]
  27. G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701-711 (2008).
    [CrossRef]
  28. H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
    [CrossRef]

2008 (5)

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294-298 (2008).
[CrossRef]

G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701-711 (2008).
[CrossRef]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
[CrossRef]

2007 (1)

G. Moon and H. R. Noh, “Theoretical calculation of the saturated absorption spectrum for a multilevel atom,” J. Korean Phys. Soc. 50, 1037-1043 (2007).
[CrossRef]

2006 (2)

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

2004 (1)

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631-637 (2004).
[CrossRef]

2003 (1)

2001 (1)

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

1998 (1)

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

1997 (1)

S. Nakayama, “Optical pumping effects in high resolution laser spectroscopy,” Phys. Scr. T70, 64-74 (1997).
[CrossRef]

1994 (1)

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

1992 (1)

K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

1989 (1)

R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

W. Gawlik, “Nonstationary effects in velocity-selective optical pumping,” Phys. Rev. A 34, 3760-3769 (1986).
[CrossRef] [PubMed]

1985 (1)

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. Part 1 24, 1-7 (1985).
[CrossRef]

1984 (1)

C. M. Klimcak and J. C. Camparo, “Optical-pumping dips in a homogeneously broadened fluorescence line,” Phys. Rev. A 30, 1791 (1984).
[CrossRef]

1982 (1)

J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
[CrossRef]

1980 (3)

J. E. Thomas and W. W. Quivers, Jr., “Transit-time effects in optically pumped coupled three-level systems,” Phys. Rev. A 22, 2115-2121 (1980).
[CrossRef]

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

1976 (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

1962 (1)

W. R. Bennett, Jr., “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580-593 (1962).
[CrossRef]

Adams, C. S.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Banerjee, A.

Bennett, Jr., W. R.

W. R. Bennett, Jr., “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580-593 (1962).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
[CrossRef]

Bordé, C. J.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

Camparo, J. C.

C. M. Klimcak and J. C. Camparo, “Optical-pumping dips in a homogeneously broadened fluorescence line,” Phys. Rev. A 30, 1791 (1984).
[CrossRef]

Cornish, S. L.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer, 1998).

Do, H. D.

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
[CrossRef]

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

Gawlik, W.

W. Gawlik, “Nonstationary effects in velocity-selective optical pumping,” Phys. Rev. A 34, 3760-3769 (1986).
[CrossRef] [PubMed]

Grimm, R.

R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
[CrossRef] [PubMed]

R. Grimm and J. Mlynek, “Light-pressure-induced nonlinear dispersion in a Doppler-broadened medium: theory and experimental proposal,” J. Opt. Soc. Am. B 5, 1655-1660 (1988).
[CrossRef]

Hall, J. L.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Harris, M. L.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

Hughes, I. G.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631-637 (2004).
[CrossRef]

Huhle, T.

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

Hummer, D. G.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Im, K. B.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Jung, H. Y.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Kano, S. S.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Khanbekyan, A.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Kim, P. S.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Klimcak, C. M.

C. M. Klimcak and J. C. Camparo, “Optical-pumping dips in a homogeneously broadened fluorescence line,” Phys. Rev. A 30, 1791 (1984).
[CrossRef]

Knaak, K. M.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

Kunasz, C. V.

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

Lee, H. S.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Levenson, M. D.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Liao, P. F.

J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Maguire, L. P.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

Mariotti, E.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Matthias, E.

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

McLeod, I. C.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Meschede, D.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

Mese, E.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

Mlynek, J.

R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
[CrossRef] [PubMed]

R. Grimm and J. Mlynek, “Light-pressure-induced nonlinear dispersion in a Doppler-broadened medium: theory and experimental proposal,” J. Opt. Soc. Am. B 5, 1655-1660 (1988).
[CrossRef]

Moi, L.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Moon, G.

G. Moon and H. R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294-298 (2008).
[CrossRef]

G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
[CrossRef]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701-711 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Theoretical calculation of the saturated absorption spectrum for a multilevel atom,” J. Korean Phys. Soc. 50, 1037-1043 (2007).
[CrossRef]

Moroshkin, P.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Murnick, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

Nakayama, S.

S. Nakayama, “Optical pumping effects in high resolution laser spectroscopy,” Phys. Scr. T70, 64-74 (1997).
[CrossRef]

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. Part 1 24, 1-7 (1985).
[CrossRef]

Natarajan, V.

Noh, H. R.

G. Moon and H. R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294-298 (2008).
[CrossRef]

G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701-711 (2008).
[CrossRef]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Theoretical calculation of the saturated absorption spectrum for a multilevel atom,” J. Korean Phys. Soc. 50, 1037-1043 (2007).
[CrossRef]

Noh, H. S.

G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
[CrossRef]

Oh, C. H.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Papoyan, A.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

Pashayan-Leroy, Y.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Quivers, Jr., W. W.

J. E. Thomas and W. W. Quivers, Jr., “Transit-time effects in optically pumped coupled three-level systems,” Phys. Rev. A 22, 2115-2121 (1980).
[CrossRef]

Rinneberg, H.

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

Sargsyan, A.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Sarkisyan, D.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Schmidt, O.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

Scholten, R. E.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

Smith, D. A.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631-637 (2004).
[CrossRef]

Song, S. H.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Tarleton, E.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Thomas, J. E.

J. E. Thomas and W. W. Quivers, Jr., “Transit-time effects in optically pumped coupled three-level systems,” Phys. Rev. A 22, 2115-2121 (1980).
[CrossRef]

Timmermann, A.

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

van Bijnen, R. M. W.

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

Weis, A.

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Wieman, C. E.

K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Wokaun, A.

J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
[CrossRef]

Wynands, R.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

Am. J. Phys. (2)

K. B. MacAdam, A. Steinbach, and C. E. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631-637 (2004).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: How to reverse peaks and observe narrow resonances,” Appl. Phys. B: Lasers Opt. 59, 167-178 (1994).
[CrossRef]

J. Korean Phys. Soc. (2)

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field,” J. Korean Phys. Soc. 33, 277-280 (1998).

G. Moon and H. R. Noh, “Theoretical calculation of the saturated absorption spectrum for a multilevel atom,” J. Korean Phys. Soc. 50, 1037-1043 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

L. P. Maguire, R. M. W. van Bijnen, E. Mese, and R. E. Scholten, “Theoretical calculation of saturated absorption spectra for multi-level atoms,” J. Phys. B 39, 2709-2720 (2006).
[CrossRef]

J. Phys. Soc. Jpn. (1)

G. Moon, H. S. Noh, and H. R. Noh, “Effect of laser beam diameter variation in saturated absorption spectra,” J. Phys. Soc. Jpn. 77, 074301 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. Part 1 24, 1-7 (1985).
[CrossRef]

Laser Phys. (1)

A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, “Saturated absorption spectroscopy: elimination of crossover resonances with the use of a nanocell,” Laser Phys. 18, 749-755 (2008).
[CrossRef]

Opt. Commun. (1)

G. Moon and H. R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294-298 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

W. R. Bennett, Jr., “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580-593 (1962).
[CrossRef]

Phys. Rev. A (9)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955 (1980).
[CrossRef]

W. Gawlik, “Nonstationary effects in velocity-selective optical pumping,” Phys. Rev. A 34, 3760-3769 (1986).
[CrossRef] [PubMed]

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236-263 (1976).
[CrossRef]

J. E. Thomas and W. W. Quivers, Jr., “Transit-time effects in optically pumped coupled three-level systems,” Phys. Rev. A 22, 2115-2121 (1980).
[CrossRef]

J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance two-photon spectroscopic line shapes caused by velocity-selective optical pumping,” Phys. Rev. A 26, 2643-2655 (1982).
[CrossRef]

C. M. Klimcak and J. C. Camparo, “Optical-pumping dips in a homogeneously broadened fluorescence line,” Phys. Rev. A 30, 1791 (1984).
[CrossRef]

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501 (2001).
[CrossRef]

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

H. D. Do, G. Moon, and H. R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. A 77, 032513 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

R. Grimm and J. Mlynek, “Light-pressure-induced line-shape asymmetry of the saturation dip in an atomic gas,” Phys. Rev. Lett. 63, 232 (1989).
[CrossRef] [PubMed]

Phys. Scr. (1)

S. Nakayama, “Optical pumping effects in high resolution laser spectroscopy,” Phys. Scr. T70, 64-74 (1997).
[CrossRef]

Z. Phys. A (1)

H. Rinneberg, T. Huhle, E. Matthias, and A. Timmermann, “Influence of atomic alignment on crossover signals in saturation spectroscopy,” Z. Phys. A 295, 17-25 (1980).
[CrossRef]

Other (2)

W. Demtröder, Laser Spectroscopy (Springer, 1998).

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Hyperfine-energy-level diagram of the D 2 transition of Rb 87 atoms.

Fig. 2
Fig. 2

Experimental schematic for saturated absorption spectroscopy; M, Mirror; L, Lens; BS, Beam Splitter cube; PBS, the Polarizing Beam Splitter cube; GT, the Glan Thompson Polarizer; λ 2 , the half-wave plate; λ 4 , the quarter-wave plate; and PD, Photodiode.

Fig. 3
Fig. 3

The dependence of the relative magnitude of the peaks on the intensity (left panels) and the beam diameter (central panels) for the transition line F g = 1 F e = 0 , 1 , 2 where the pump-probe polarization configurations are (a) σ + σ + and (b) σ + σ . Typical SAS spectra A [B] where D = 4 D 0 and s = s 0 [ D = D 0 and s = 4 s 0 ] are displayed in panels on the right.

Fig. 4
Fig. 4

The relative magnitude of the signals for the intensity dependence (left-hand side panels) and the diameter dependence (central panels) for the transition line F g = 2 F e = 1 , 2 , 3 . The pump-probe polarization configurations are (a) σ + σ + and (b) σ + σ . Typical SAS spectra A [B] where D = 4 D 0 and s = s 0 [ D = D 0 and s = 4 s 0 ] are shown in the right-hand side panels.

Fig. 5
Fig. 5

Detailed experimental and calculated SAS spectra for the transition F g = 2 F e = 3 for (a),(c) diameter and (b), (d) intensity dependence. (e), (f) Decomposition of the SAS signal for diameter/intensity dependence.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( δ ) = 0 d t H ( t ) d v π u e ( v u ) 2 F e = F g 1 F g + 1 α ( F g , F e ) ,
H ( t ) = 2 D 2 u 2 t 3 0 1 d η η 3 1 η 2 exp ( D 2 u 2 t 2 η 2 ) ,
P ̇ F m = F e = F 1 F + 1 [ S F , m F e , m + 1 ( P F m Q F e m + 1 ) + m e = m 1 m + 1 R F , m F e , m e Q F e m e ] ,
P ̇ F m = F e = F 1 F + 1 m e = m 1 m + 1 R F , m F e , m e Q F e m e ,
Q ̇ F e m = S F , m 1 F e , m ( P F m 1 Q F e m ) m g = m 1 m + 1 ( R F , m g F e , m + R F , m g F e , m ) Q F e m ,
H ( t ) d t = H ( τ ) d τ ,
d d τ P F m = F e = F 1 F + 1 [ ε S F , m F e , m + 1 ( P F m Q F e m + 1 ) + m e = m 1 m + 1 ε R F , m F e , m e Q F e m e ] .
L 3 = S sat + S pu + S LP ,
S sat = 5 8 L 0 ( s ) ,
S pu = 5 16 L 0 ( 1 9 s Γ t ) 127 440 L 0 ( 2 25 s Γ t ) 119 800 L 0 ( 3 25 s Γ t ) 5503 26400 L 0 ( 7 225 s Γ t ) ,
L 0 ( x ) = x x + 1 1 + x + 1 16 ( δ Γ ) 2 + ( 1 + x + 1 ) 2 .
S LP D s ( 4 + s ) 1 + s δ Γ [ 2 + s + 8 ( δ Γ ) 2 ] 2 .

Metrics