Abstract

A more exact theoretical model to simulate numerically a fiber-coupled diode-end-pumped CW Nd3+:GdVO4 laser is presented. Both the thermal effects and the pump beam absorption saturation, as well as the interaction between the thermal effects and laser operation, are taken into account. The super-Gaussian shape is adopted to describe the pump beam well. The theoretical results are in rather good agreement with the published experimental data at pump powers up to 20W.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
    [CrossRef]
  2. N. Pavel and T. Taira, “Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser,” Opt. Commun. 260, 271-276 (2006).
    [CrossRef]
  3. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
    [CrossRef]
  4. W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
    [CrossRef]
  5. G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
    [CrossRef]
  6. C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311 (2002).
    [CrossRef]
  7. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
    [CrossRef]
  8. J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
    [CrossRef]
  9. J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
    [CrossRef]
  10. A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
    [CrossRef]
  11. Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
    [CrossRef]
  12. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381-2395 (2001).
    [CrossRef]
  13. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995-9010 (2008).
    [CrossRef] [PubMed]
  14. S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
    [CrossRef]
  15. J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
    [CrossRef]
  16. L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
    [CrossRef]

2008 (2)

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995-9010 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

2006 (2)

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

N. Pavel and T. Taira, “Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser,” Opt. Commun. 260, 271-276 (2006).
[CrossRef]

2003 (2)

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

2002 (3)

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

2001 (2)

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381-2395 (2001).
[CrossRef]

2000 (1)

G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
[CrossRef]

1999 (1)

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

1997 (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

1992 (1)

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
[CrossRef]

Balembois, F.

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381-2395 (2001).
[CrossRef]

Czeranowsky, C.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Didierjean, J.

Ding, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Fan, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Georges, P.

Hashimoto, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Herault, E.

Heumann, E.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Higuchi, M.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Hu, X.

Huang, L. X.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

Huang, W. L.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Huber, G.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Izawa, Y.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

Jiang, M.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

Kutovoi, S.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Lai, K.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Lam, Y.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Lau, E.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Lavigne, P.

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
[CrossRef]

Leong, C.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Li, G.

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

Li, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Li, Z. G.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Lim, C.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

Lim, G. C.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Lim, Y.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Liu, J.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Martel, G.

G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
[CrossRef]

Meng, X.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Meng, X. L.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Moore, N.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Morikawa, J.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Morin, M.

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
[CrossRef]

Ogawa, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Ozkul, C.

G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
[CrossRef]

Parent, A.

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
[CrossRef]

Pavel, N.

N. Pavel and T. Taira, “Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser,” Opt. Commun. 260, 271-276 (2006).
[CrossRef]

Qin, L. J.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Sanchez, F.

G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
[CrossRef]

Schmidt, M.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Shao, Z.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Shen, H. Y.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Su, F.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Taira, T.

N. Pavel and T. Taira, “Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser,” Opt. Commun. 260, 271-276 (2006).
[CrossRef]

Takahashi, J.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Tam, S.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Urata, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Wada, S.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Wang, C.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

Wang, J.

Wang, Q.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

Wu, R.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Xia, H. R.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Xie, W.

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

Xiong, Z.

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Xu, B. C.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Yang, K.

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

Zavartsev, Y.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Zhang, H.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Zhang, X.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Zhao, P.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Zhao, S.

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

Zheng, G.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

Zhu, L.

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18-27 (2002).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Zou, J.

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

Cryst. Res. Technol. (1)

L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793-797 (2003).
[CrossRef]

IEEE J. Quantum Electron. (4)

Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979-986 (2003).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424-1429 (1997).
[CrossRef]

W. Xie, S. Tam, Y. Lam, K. Lai, R. Wu, Y. Lim, and E. Lau, “Analysis of a dynamical procedure on diode-end-pumped solid-state lasers,” IEEE J. Quantum Electron. 37, 1368-1372 (2001).
[CrossRef]

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 306-311 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, T. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381-2395 (2001).
[CrossRef]

Opt. Commun. (4)

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, “More precise determination of thermal lens focal length for end-pumped solid-state lasers,” Opt. Commun. 266, 620-626 (2006).
[CrossRef]

N. Pavel and T. Taira, “Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO4 laser,” Opt. Commun. 260, 271-276 (2006).
[CrossRef]

G. Martel, C. Ozkul, and F. Sanchez, “Experimental and theoretical evidence of pump-saturation effects in low power end-pumped Nd:YVO4 microchip laser,” Opt. Commun. 185, 419-430 (2000).
[CrossRef]

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode pumped intracavity double Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361-365 (2002).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

J. Zou, S. Zhao, K. Yang, and G. Li, “A simple method to determine the thermal focal length of solid-state lasers with rate equation,” Opt. Laser Technol. 39, 778-781 (2007).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “High-power end-pumped CW Nd:GdVO4 laser formed with a flat-flat cavity,” Opt. Laser Technol. 31, 459-462 (1999).
[CrossRef]

Opt. Quantum Electron. (1)

A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, S1071-S1079 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Laser output power versus incident pump power: theoretical (curves) and experimental (symbols) results. T = ( a ) 5%; (b) 15%; (c) 25%.

Fig. 2
Fig. 2

Laser output power versus incident pump power for different cavity lengths (units: millimeters).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

d N 2 d t = N 1 W abs N 2 W em N 2 τ = 0 ,
N 1 + N 2 = N 0 ,
I p = P p ( z ) φ p ( x , y , z ) ,
I s = [ P s + ( z ) + P s ( z ) ] φ s ( x , y , z ) ,
φ p = A 0 exp { 2 [ x 2 + y 2 ω p ( z ) ] N } ,
φ s = 2 π ω s 2 exp [ 2 ( x 2 + y 2 ) ω s 2 ] ,
d P p ( z ) d z = P p ( z ) a 2 a 2 a 2 a 2 N 1 σ abs φ p ( x , y , z ) d x d y δ p P p ( z ) ,
d P s ± ( z ) d z = ± P s ± ( z ) a 2 a 2 a 2 a 2 N 2 σ em φ s ( x , y , z ) d x d y δ s P s ± ( z ) .
P s + ( z ) P s ( z ) = C ,
P p ( 0 ) = P in ,
P s + ( 0 ) = R 1 P s ( 0 ) ,
P s ( l ) = R 2 P s + ( l ) ,
P s ( z ) = [ P s + ( 0 ) ] 2 R 1 P s + ( z ) ,
P s + ( 0 ) = P s + ( l ) R 1 R 2 .
K x 2 T x 2 + K y 2 T y 2 + K z 2 T z 2 + q ( x , y , z ) = 0 ,
T ( x = ± a 2 , y = ± a 2 ) = T 0 ,
K z T z z = 0 , l = h a [ T ( z = 0 , l ) T a ] ,
OPD ( x , y ) = 2 0 l [ n T + ( n 1 ) ( 1 + v ) α T ] T ( x , y , z ) d z ,
δ d = 1 S R = 1 a 2 a 2 a 2 a 2 exp ( i 2 π λ s Δ φ ) exp ( x 2 + y 2 ω s 2 ) d x d y 2 + + exp ( x 2 + y 2 ω s 2 ) d x d y 2 ,

Metrics