Abstract

We investigate one-dimensional nonlinear photonic crystals consisting of ferroelectric domains with the modulated polarization direction. The optimal arrangement of the polarization directions of the ferroelectric domains can be achieved with the use of the simulated annealing method. We find that the second-harmonic generation (SHG) is increased significantly when the frequencies of the fundamental wave aim at the photonic band edges and the special arrangement of the polarization directions of the ferroelectric domains is satisfied. The optimal structure can achieve simultaneously multiple wavelength SHGs with nearly identical conversion efficiencies for both the “forward” and “backward” SHGs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
    [Crossref]
  2. H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
    [Crossref]
  3. L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88, 122904-122906 (2006).
    [Crossref]
  4. L. M. Zhao and B. Y. Gu, “Enhanced second-harmonic generation for multiple wavelengths by defect modes in one-dimensional photonic crystals,” Opt. Lett. 31, 1510-1512 (2006).
    [Crossref] [PubMed]
  5. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
    [Crossref]
  6. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
    [Crossref]
  7. M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
    [Crossref]
  8. H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
    [Crossref]
  9. M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
    [Crossref] [PubMed]
  10. M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
    [Crossref] [PubMed]
  11. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
    [Crossref]
  12. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
    [Crossref]
  13. L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
    [Crossref]
  14. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408-410 (2008).
    [Crossref] [PubMed]
  15. S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
    [Crossref] [PubMed]
  16. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
    [Crossref] [PubMed]
  17. V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

2008 (1)

2007 (1)

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

2006 (2)

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88, 122904-122906 (2006).
[Crossref]

L. M. Zhao and B. Y. Gu, “Enhanced second-harmonic generation for multiple wavelengths by defect modes in one-dimensional photonic crystals,” Opt. Lett. 31, 1510-1512 (2006).
[Crossref] [PubMed]

2005 (1)

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

2004 (2)

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

2003 (1)

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

2001 (1)

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

2000 (1)

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

1999 (2)

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

1997 (3)

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214-1216 (1997).
[Crossref] [PubMed]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

1983 (1)

S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[Crossref] [PubMed]

Aguanno, G. D.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Andreani, L. C.

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

Angelis, C. D.

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

Bertolotti, M.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Bloemer, M. J.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Bowden, C. M.

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Cao, C. Q.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

Cao, H.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

Centini, M.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Chan, S. K.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Cheng, C.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

DAguanno, G.

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Dong, B. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Dumeige, Y.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Fejer, M. M.

Gao, Z. D.

Gelatt, C. P.

S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[Crossref] [PubMed]

Gu, B. Y.

L. M. Zhao and B. Y. Gu, “Enhanced second-harmonic generation for multiple wavelengths by defect modes in one-dimensional photonic crystals,” Opt. Lett. 31, 1510-1512 (2006).
[Crossref] [PubMed]

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88, 122904-122906 (2006).
[Crossref]

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

Gurazdyan, G. G.

V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Hall, D. B.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

Haus, J. W.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

He, J. L.

Hirao, K.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Hu, X. P.

Kirkpatrick, S.

S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[Crossref] [PubMed]

Levenson, J. A.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Li, R.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Liscidini, M.

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

Liu, H.

Locatelli, A.

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Meyn, J.-P.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[Crossref]

Nefedov, I.

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Qiu, J.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Ren, F. F.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Sagenes, I.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Sauvage, S.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Scalora, M.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Sciscione, L.

Si, J.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Sibilia, C.

M. Centini, G. D. Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, and M. J. Bloemer, “Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections,” Opt. Lett. 29, 1924-1926 (2004).
[Crossref] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Sou, I. K.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Torkelson, J. M.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

Vecchi, M. P.

S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[Crossref] [PubMed]

Vidakovic, P.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

Viswanathan, R.

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Wang, F. H.

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

Wang, H. T.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Wang, X.

Wong, G. K. L.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Wong, K. S.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Xie, P.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Yan, Z.

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

Yang, H.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Zhang, Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

Zhang, Z. Q.

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

Zhao, G.

Zhao, L. M.

L. M. Zhao and B. Y. Gu, “Enhanced second-harmonic generation for multiple wavelengths by defect modes in one-dimensional photonic crystals,” Opt. Lett. 31, 1510-1512 (2006).
[Crossref] [PubMed]

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88, 122904-122906 (2006).
[Crossref]

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

Zhou, Y. S.

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

Zhu, S. N.

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[Crossref]

Appl. Phys. Lett. (5)

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538-540 (2000).
[Crossref]

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88, 122904-122906 (2006).
[Crossref]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagenes, J. A. Levenson, C. Sibilia, M. Centini, G. D. Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021-3023 (2001).
[Crossref]

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, “Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106-131108 (2005).
[Crossref]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175-2177 (1999).
[Crossref]

J. Appl. Phys. (1)

L. M. Zhao, B. Y. Gu, Y. S. Zhou, and F. H. Wang, “Coupled third harmonic generations and multiple mode effects in aperiodic optical superlattices with a finite lateral width,” J. Appl. Phys. 94, 1882-1891 (2003).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166-3174 (1997).
[Crossref]

Phys. Rev. B (1)

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70, 245109-245112 (2004).
[Crossref]

Phys. Rev. E (1)

M. Centini, C. Sibilia, M. Scalora, G. DAguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[Crossref]

Phys. Rev. Lett. (1)

M. Liscidini, A. Locatelli, L. C. Andreani, and C. D. Angelis, “Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals,” Phys. Rev. Lett. 99, 053907-053910 (2007).
[Crossref] [PubMed]

Science (2)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843-846 (1997).
[Crossref]

S. Kirkpatrick, C. P. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[Crossref] [PubMed]

Other (1)

V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission spectrum of the constructed nonlinear material PC in the normal incidence of the FW with the TE polarization. λ 1 = 1.3803 , λ 2 = 1.2613 , and λ 3 = 1.0719 .

Fig. 2
Fig. 2

Distribution of E ( 1 ) ( x ) 2 E 0 2 at λ = 1.2613 μ m : (a) for the whole sample and (b) for a part of the sample.

Fig. 3
Fig. 3

Distribution of E ( 2 ) ( x ) 2 E 0 2 at λ = 1.2613 μ m for three different samples: (a) one, (b) two, and (c) three. The distribution for the whole sample is in the left panel and for a part of sample in the right panel.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ d 2 d x 2 + k l ( 1 ) 2 ] E l ( 1 ) ( x ) = 0 ,
[ d 2 d x 2 + k l ( 2 ) 2 ] E l ( 2 ) ( x ) = k 20 2 χ l E l ( 1 ) 2 ( x ) ,
D = α η 1 0 η forth ( λ α ) + η 2 0 η back ( λ α ) + β 1 [ max { η forth ( λ α ) } min { η forth ( λ α ) } ] + β 2 [ max { η back ( λ α ) } min { η back ( λ α ) } ] ,

Metrics