Abstract

A prism-shape microlens constructed with two-dimensional nanoscale metal waveguide arrays (MWGAs) is introduced for near-field subwavelength imaging. Finite-difference time-domain numerical simulations reveal that the microlens shows interesting object distance-independent subwavelength imaging as the object distance ranges from 100nmto1000nm and the concave angle of the prism-shape lens is less than 150°. The possibility of using such microlens for array microimaging is also demonstrated. The microlens may provide potential applications in nanophotonics, lithography, and superresolution imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003).
    [CrossRef] [PubMed]
  4. C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
    [CrossRef] [PubMed]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  6. T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  8. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  9. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
    [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
    [CrossRef]
  12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
    [CrossRef]
  13. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
    [CrossRef] [PubMed]
  14. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef] [PubMed]
  15. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
    [CrossRef] [PubMed]
  16. Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
    [CrossRef]
  17. X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. B 70, 195110 (2004).
    [CrossRef]
  18. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
    [CrossRef] [PubMed]
  19. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
    [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  21. H. Raether, Surface Plasmon (Springer-Verlag, 1988).
  22. H. J. Tiziani and H. M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt. 33, 567-572 (1994).
    [CrossRef] [PubMed]
  23. F. Wippermann, D. Radtke, M. Amlerg, and S. Sinzinger, “Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays,” Opt. Express 14, 10765-10778 (2006).
    [CrossRef] [PubMed]
  24. J. R. Leger, M. G. Moharam, and T. K. Gaylord, “Diffractive optics: an introduction to the feature issue,” Appl. Opt. 34, 2399-2400 (1995).
    [CrossRef] [PubMed]
  25. J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
    [CrossRef]
  26. J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
    [CrossRef]

2007 (2)

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
[CrossRef]

2006 (4)

F. Wippermann, D. Radtke, M. Amlerg, and S. Sinzinger, “Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays,” Opt. Express 14, 10765-10778 (2006).
[CrossRef] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

2005 (2)

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

2004 (4)

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. B 70, 195110 (2004).
[CrossRef]

2003 (5)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

2002 (1)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

1995 (1)

1994 (1)

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Amlerg, M.

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Bearpark, T.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Chan, C. T.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Economou, E. N.

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Fan, X.

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

Joannopoulos, J. D.

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Johnson, G.

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Kafesaki, M.

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Koshny, T.

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

Lbanescu, M.

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

Lee, J. C. W.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Leger, J. R.

Li, Z. Y.

Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

Lin, J.

J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
[CrossRef]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

Liu, J.

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Liu, S.

J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
[CrossRef]

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

Lu, Z.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Luo, C.

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Moharam, M. G.

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Murakowski, J. A.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Prather, D. W.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Qiu, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Radtke, D.

Raether, H.

H. Raether, Surface Plasmon (Springer-Verlag, 1988).

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Schneider, G. J.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Schuetz, C. A.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Seddon, N.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

Shan, M.

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Shi, S.

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Sinzinger, S.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Tan, J.

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Thylen, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Tiziani, H. J.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

Uhde, H. M.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

Wang, G. P.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Wippermann, F.

Ye, J.

J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
[CrossRef]

Zhang, H.

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. B 70, 195110 (2004).
[CrossRef]

Zhao, C.

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

Appl. Opt. (2)

Nature (2)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007).
[CrossRef]

J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003).
[CrossRef]

X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. B 70, 195110 (2004).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Phys. Rev. Lett. (8)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef] [PubMed]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003).
[CrossRef] [PubMed]

C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmon (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the MWGAs for imaging. (a) Slab lens. (b) The proposed prism-shape microlenses.

Fig. 2
Fig. 2

Simulated gray distributions of SPPs passing through the microlenses for w = ( a ) 1.0 λ , (b) 1.5 λ , and (c) 2.0 λ , respectively, while θ = 90 ° , d 1 = 400 nm .

Fig. 3
Fig. 3

(a) Intensity profiles of light along the z direction starting from point O for w = 0.5 λ , 1.0 λ , 1.5 λ , 2.0 λ , 2.5 λ , and 3.0 λ , respectively. (b) Dependence of the image distance d 2 on source distance d 1 for w = 1.0 λ (dashed curve), 1.5 λ (solid curve), and 2.0 λ (dotted curve), respectively.

Fig. 4
Fig. 4

(a) Dependence of the image distance d 2 on θ for w = 1.0 λ (—★—), 1.5 λ (—□—), and 2.0 λ (—◇—), respectively, all with d 1 = 400 nm . (b) The simulated gray distribution of SPPs passing through the microlenses for θ = 120 ° , w = 1.5 λ , d 1 = 400 nm . (c) Dependence of the image distance d 2 on source distance d 1 as θ = 150 ° , w = 1.5 λ .

Fig. 5
Fig. 5

(a) Scheme of stacking two microlenses for array imaging. The simulated gray distributions of SPPs passing through two stacked microlenses with N = 30 (b) and N = 20 (d) as a plane wave is incident, all with w = 1.5 λ and θ = 120 ° . (c) The intensity profiles (along the x direction) of images as N = 40 (dashed curve), 30 (solid curve), and 20 (dashed-dotted curve), respectively.

Metrics