Abstract

A design method for hollow optical fibers is shown that has a dielectric cover film loaded on the inner metal coating to obtain flexible fiberoptics transmitting a wide wavelength range in THz region with low loss. Spectral losses of fibers that are fabricated by two different methods are measured by using a broadband THz source. The loss of a fiber with an inner diameter of 3mm was 1.3dBm at the wavelength of 200μm, and the losses were lower than 3dB in the wavelength region from 150μmto>250μm. Because these fibers are flexible, robust, and highly efficient in a wide wavelength range, they are useful in remote THz spectroscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
    [CrossRef]
  2. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguide,” Opt. Express 14, 9944-9954 (2006).
    [CrossRef] [PubMed]
  3. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
    [CrossRef] [PubMed]
  4. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
    [CrossRef]
  5. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  6. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
    [CrossRef]
  7. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  8. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230-1235 (2007).
    [CrossRef]
  9. K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature (London) 432, 376-379 (2004).
    [CrossRef]
  10. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons effective terahertz waveguides,” Opt. Express 13, 511-518 (2005).
    [CrossRef] [PubMed]
  11. http://www.do-ko.jp/
  12. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116-126 (1984).
    [CrossRef]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945-2947 (2007).
    [CrossRef] [PubMed]
  14. M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” J. Lightwave Technol. LT-3, 303-307 (1985).
    [CrossRef]
  15. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).
  16. W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.
  17. http://www.zeon.co.jp/
  18. Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
    [CrossRef]

2008

2007

2006

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguide,” Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

2005

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons effective terahertz waveguides,” Opt. Express 13, 511-518 (2005).
[CrossRef] [PubMed]

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature (London) 432, 376-379 (2004).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004).
[CrossRef] [PubMed]

2001

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

2000

1985

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” J. Lightwave Technol. LT-3, 303-307 (1985).
[CrossRef]

1984

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

Abe, Y.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Boreman, G.

W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.

Bowden, B.

Cao, Q.

Chen, H.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Chen, L.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Dupuis, A.

Folks, W. R.

W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.

Gallot, G.

George, R.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Grischkowsky, D.

Harrington, J. A.

Hassani, A.

Hidaka, T.

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Ichikawa, S.

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Ito, H.

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230-1235 (2007).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Ito, T.

Jahns, J.

Jamison, S. P.

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Kao, T.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Kurz, H.

Lu, J.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Marchewka, A.

Matsuura, Y.

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230-1235 (2007).
[CrossRef]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

McGowan, R. W.

Minamide, H.

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230-1235 (2007).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature (London) 432, 376-379 (2004).
[CrossRef]

Miyagi, M.

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230-1235 (2007).
[CrossRef]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” J. Lightwave Technol. LT-3, 303-307 (1985).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

Mohri, S.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Mueller, E.

Nagel, M.

Nishizawa, J.

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Pandey, S. K.

W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.

Pedersen, P.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Shi, Y.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Skorobogatiy, M.

Sun, C.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Takada, G.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Tamura, K.

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature (London) 432, 376-379 (2004).
[CrossRef]

Yaegashi, M.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

IEEE J. Lightwave Technol.

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF Cladding Terahertz Waveguide,” IEEE J. Lightwave Technol. 23, 2469-2473 (2005).
[CrossRef]

J. Korean Phys. Soc.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” J. Lightwave Technol. LT-3, 303-307 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Nature (London)

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature (London) 432, 376-379 (2004).
[CrossRef]

Opt. Express

Opt. Laser Technol.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001).
[CrossRef]

Opt. Lett.

L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306-308 (2006).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945-2947 (2007).
[CrossRef] [PubMed]

Other

http://www.do-ko.jp/

W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.

http://www.zeon.co.jp/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Calculated losses of HE 11 and TE 11 modes in a silver hollow optical fiber with an inner dielectric film having a refractive index of 1.5. The inner diameter of the waveguide is 3 mm , and the ray optic calculation was made at a wavelength of 200 μ m .

Fig. 2
Fig. 2

Calculated losses of HE 11 mode in a silver hollow optical fiber with an inner dielectric film having a refractive index of 1.5 and thickness of 30 μ m . The inner diameter of the waveguide is 3 mm and the length is 1 m . Losses of TE 11 mode in metal hollow waveguide are also shown.

Fig. 3
Fig. 3

Calculated losses of HE 11 mode in hollow metal waveguides with and without inner dielectric film.

Fig. 4
Fig. 4

Measured extinction coefficients k of cyclic olefin polymer (COP), polyethylene (PE), polystyrene (PS), and polytetrafluoroethylene (PTFE).

Fig. 5
Fig. 5

Fabrication process of PE-film-inserted hollow fibers. A polycarbonate (PC) tube is used as base tubing.

Fig. 6
Fig. 6

Measurement setup for loss evaluation of THz hollow fibers based on Fourier transform infrared spectrometer (FT-IR).

Fig. 7
Fig. 7

Measured losses of fabricated hollow fibers at the wavelength of 200 μ m . The losses are shown as a function of sputter coating time of silver, and the silver-coated strip was inversely placed on the inside of the base tubing so that the metal faced the hollow core. The inner diameter of the fibers was 3 mm , and the length was 150 mm .

Fig. 8
Fig. 8

Measured transmission spectra of hollow optical fibers with a length of 1 m and inner diameter of 3 mm . Measured spectra of a conventional hollow optical fiber with silver inner coating deposited by nonelectrolytic plating (Ag plated), PE-loaded hollow fiber with silver-deposited PE film whose PE side faced the hollow core (PE/Ag film), and hollow metal waveguide with silver-deposited PE film whose silver coating faced the core (Ag film) are shown.

Fig. 9
Fig. 9

Measured transmission losses of the fabricated fiber at the wavelength of 200 μ m as a function of dielectric thickness. The fiber was 30 cm long and had an inner diameter of 3 mm . Losses estimated by ray optic calculation are also shown for comparison.

Fig. 10
Fig. 10

Measured loss spectra of a COP- and silver-coated hollow fiber and a silver-only coated fiber. Both fibers were 3 mm in inner diameter and 1 m long. The estimated coating thickness is 27 μ m .

Fig. 11
Fig. 11

Measured bending losses of a silver-only coated fiber (Ag), a fiber with an inserted PE film (PE/Ag film), and a fiber with an inner COP layer formed by a liquid phase technique (COP/Ag coating) with a coating thickness of 27 μ m . All the fibers were 3 mm in inner diameter and 1 m long.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d = λ 4 n d 2 1 1 π 2 tan 1 [ n d n d 2 1 4 ] ,
α = 4 u 2 k 0 2 D 3 n n 2 + k 2 ( 1 + n d 2 n d 2 1 ) 2     ,

Metrics