Abstract

We study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  3. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  4. L. Boivin and B. C. Collings, “Spectrum slicing of coherent sources in optical communications,” Opt. Fiber Technol. 7, 1-20 (2001).
    [CrossRef]
  5. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
    [CrossRef] [PubMed]
  6. Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
    [CrossRef]
  7. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
    [CrossRef]
  8. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322-424 (1999).
    [CrossRef]
  9. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
    [CrossRef]
  10. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786-1792 (2006).
    [CrossRef]
  11. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98 (1998), pp. 475-476.
  12. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
    [CrossRef] [PubMed]
  13. L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
    [CrossRef]
  14. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139-149 (1984).
    [CrossRef]
  15. D. Grischkowsky and A. C. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1-3 (1982).
    [CrossRef]
  16. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
    [CrossRef] [PubMed]
  17. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
    [CrossRef]
  18. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave-breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10, 457-459 (1985).
    [CrossRef] [PubMed]
  19. J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).
  21. E. Bourkoff, W. Zhao, R. I. Joseph, and D. N. Christodoulides, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272-274 (1987).
    [CrossRef] [PubMed]
  22. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef] [PubMed]
  23. C. Jirauschek, F. Ö. Ilday, and F. X. Kärtner, “A semi-analytic theory of the self-similar laser oscillator,” in Nonlinear Guided Waves and Their Applications (NLGW), Technical Digest (CD) (Optical Society of America, 2005), paper WC4.
  24. B. Burgoyne, N. Godbout, and S. Lacroix, “Nonlinear pulse propagation in optical fibers using second order moments,” Opt. Express 15, 10075-10090 (2007).
    [CrossRef] [PubMed]
  25. C.-K. Rosenberg, D. Anderson, M. Desaix, P. Johannisson, and M. Lisak, “Evolution of optical pulses towards wave breaking in highly nonlinear fibres,” Opt. Commun. 273, 272-277 (2007).
    [CrossRef]
  26. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking in nonlinear optical fibers,” J. Opt. Soc. Am. B 9, 1358-1361 (1992).
    [CrossRef]
  27. J. P. Hamaide and P. Emplit, “Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres,” Electron. Lett. 24, 818-819 (1988).
    [CrossRef]
  28. S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
    [CrossRef]
  29. J. Azana, “Time-frequency (Wigner) analysis of linear and nonlinear pulse propagation in optical fibers,” EURASIP J. Appl. Signal Process. 10, 1554-1565 (2005).
  30. R. H. Stolen and Q. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
    [CrossRef]
  31. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
    [CrossRef] [PubMed]
  32. J. E. Rothenberg, “Femtosecond optical shocks and wave-breaking in fiber propagation,” J. Opt. Soc. Am. B 6, 2392-2401 (1989).
    [CrossRef]
  33. J. E. Rothenberg, “Colliding visible picosecond pulses in optical fibers,” Opt. Lett. 15, 443-445 (1990).
    [CrossRef] [PubMed]
  34. S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication (2000), Paper ThA1.
  35. C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12, 5104-5109 (2004).
    [CrossRef] [PubMed]
  36. D. Anderson, M. Desaix, M. Karlson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).
    [CrossRef]
  37. D. Schadt and B. Jaskorzynska, “Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by pulse walk-off in optical fibers,” J. Opt. Soc. Am. B 4, 856-862 (1987).
    [CrossRef]
  38. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161-3170 (2006).
    [CrossRef] [PubMed]
  39. H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertsen, and P. L. Christiansen, “Evolution of chirped pulses in nonlinear single-mode fibers,” Opt. Lett. 10, 34-36 (1985).
    [CrossRef] [PubMed]
  40. A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
    [CrossRef]
  41. V. I. Kruglov and J. D. Harvey, “Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550 (2006).
    [CrossRef]
  42. S. Wabnitz, “Analytical dynamics of parabolic pulses in nonlinear optical fiber amplifiers,” IEEE Photon. Technol. Lett. 19, 507-509 (2007).
    [CrossRef]
  43. Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

2007 (9)

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

B. Burgoyne, N. Godbout, and S. Lacroix, “Nonlinear pulse propagation in optical fibers using second order moments,” Opt. Express 15, 10075-10090 (2007).
[CrossRef] [PubMed]

C.-K. Rosenberg, D. Anderson, M. Desaix, P. Johannisson, and M. Lisak, “Evolution of optical pulses towards wave breaking in highly nonlinear fibres,” Opt. Commun. 273, 272-277 (2007).
[CrossRef]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

S. Wabnitz, “Analytical dynamics of parabolic pulses in nonlinear optical fiber amplifiers,” IEEE Photon. Technol. Lett. 19, 507-509 (2007).
[CrossRef]

2006 (6)

2005 (1)

J. Azana, “Time-frequency (Wigner) analysis of linear and nonlinear pulse propagation in optical fibers,” EURASIP J. Appl. Signal Process. 10, 1554-1565 (2005).

2004 (1)

2003 (1)

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

2001 (2)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322-424 (1999).
[CrossRef]

1998 (2)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

1993 (2)

D. Anderson, M. Desaix, M. Karlson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
[CrossRef]

1992 (1)

1990 (1)

1989 (1)

1988 (1)

J. P. Hamaide and P. Emplit, “Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres,” Electron. Lett. 24, 818-819 (1988).
[CrossRef]

1987 (2)

1985 (2)

1984 (1)

1982 (1)

D. Grischkowsky and A. C. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1-3 (1982).
[CrossRef]

1981 (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
[CrossRef]

1978 (1)

R. H. Stolen and Q. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).

Albertsen, N. C.

Anderson, D.

Azana, J.

J. Azana, “Time-frequency (Wigner) analysis of linear and nonlinear pulse propagation in optical fibers,” EURASIP J. Appl. Signal Process. 10, 1554-1565 (2005).

Balant, A. C.

D. Grischkowsky and A. C. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1-3 (1982).
[CrossRef]

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
[CrossRef]

Barviau, B.

Boivin, L.

L. Boivin and B. C. Collings, “Spectrum slicing of coherent sources in optical communications,” Opt. Fiber Technol. 7, 1-20 (2001).
[CrossRef]

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication (2000), Paper ThA1.

Bourkoff, E.

Burgoyne, B.

Christiansen, P. L.

Christodoulides, D. N.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Collings, B. C.

L. Boivin and B. C. Collings, “Spectrum slicing of coherent sources in optical communications,” Opt. Fiber Technol. 7, 1-20 (2001).
[CrossRef]

Cundiff, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Desaix, M.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Eggleton, B. J.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Emplit, P.

J. P. Hamaide and P. Emplit, “Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres,” Electron. Lett. 24, 818-819 (1988).
[CrossRef]

Finot, C.

Fu, L.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Fuerbach, A.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Fujimoto, J. G.

Furusawa, F.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Ghanta, R. K.

Giessen, H.

S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Godbout, N.

Grischkowsky, D.

D. Grischkowsky and A. C. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1-3 (1982).
[CrossRef]

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
[CrossRef]

Guryanov, A.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hamaide, J. P.

J. P. Hamaide and P. Emplit, “Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres,” Electron. Lett. 24, 818-819 (1988).
[CrossRef]

Hanch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Harper, P.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Harrison, J.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Hartl, I.

Harvey, J. D.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Ibsen, M.

Ilday, F. Ö.

C. Jirauschek, F. Ö. Ilday, and F. X. Kärtner, “A semi-analytic theory of the self-similar laser oscillator,” in Nonlinear Guided Waves and Their Applications (NLGW), Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Jaskorzynska, B.

Jirauschek, C.

C. Jirauschek, F. Ö. Ilday, and F. X. Kärtner, “A semi-analytic theory of the self-similar laser oscillator,” in Nonlinear Guided Waves and Their Applications (NLGW), Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Johannisson, P.

C.-K. Rosenberg, D. Anderson, M. Desaix, P. Johannisson, and M. Lisak, “Evolution of optical pulses towards wave breaking in highly nonlinear fibres,” Opt. Commun. 273, 272-277 (2007).
[CrossRef]

Johnson, A. M.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Joseph, R. I.

Karlson, M.

Kärtner, F. X.

C. Jirauschek, F. Ö. Ilday, and F. X. Kärtner, “A semi-analytic theory of the self-similar laser oscillator,” in Nonlinear Guided Waves and Their Applications (NLGW), Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

Khopin, V. F.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322-424 (1999).
[CrossRef]

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

Ko, T. H.

Kracht, D.

Kruglov, V. I.

Kruhl, J.

S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Lacroix, S.

Lamont, M. R. E.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Lassen, H. E.

Latkin, A. I.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Li, X. D.

Lin, Q.

R. H. Stolen and Q. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Linden, S.

S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Lisak, M.

Littler, I. C. M.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Mägi, E. C.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98 (1998), pp. 475-476.

Mengel, F.

Millot, G.

Monro, T. M.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
[CrossRef]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
[CrossRef]

Mukasa, K.

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Nguyen, H. C.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Nishizawa, N.

Ozeki, Y.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

Parmigiani, F.

Pelusi, M.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Petropoulos, P.

Plocky, A.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Prochnow, O.

Provost, L.

Quiroga-Teixeiro, M. L.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Richardson, D. J.

Roelens, M. A. F.

Rosenberg, C.-K.

C.-K. Rosenberg, D. Anderson, M. Desaix, P. Johannisson, and M. Lisak, “Evolution of optical pulses towards wave breaking in highly nonlinear fibres,” Opt. Commun. 273, 272-277 (2007).
[CrossRef]

Rothenberg, J. E.

Ruehl, A.

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
[CrossRef]

Schadt, D.

Shank, C. V.

Stolen, R. H.

Sysoliatin, A.

Sysoliatin, A. A.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Taccheo, S.

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication (2000), Paper ThA1.

Ta'eed, V. G.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Taira, K.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

Takayanagi, J.

Takushima, Y.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322-424 (1999).
[CrossRef]

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Tomlinson, W. J.

Tromborg, B.

Turitsyn, S. K.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Wabnitz, S.

Wandt, D.

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Yeom, D. I.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Yousoff, Z.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

Zhao, W.

Appl. Phys. Lett. (1)

D. Grischkowsky and A. C. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1-3 (1982).
[CrossRef]

Electron. Lett. (2)

J. P. Hamaide and P. Emplit, “Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres,” Electron. Lett. 24, 818-819 (1988).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29, 862-864 (1993).
[CrossRef]

EURASIP J. Appl. Signal Process. (1)

J. Azana, “Time-frequency (Wigner) analysis of linear and nonlinear pulse propagation in optical fibers,” EURASIP J. Appl. Signal Process. 10, 1554-1565 (2005).

IEEE Photon. Technol. Lett. (3)

S. Wabnitz, “Analytical dynamics of parabolic pulses in nonlinear optical fiber amplifiers,” IEEE Photon. Technol. Lett. 19, 507-509 (2007).
[CrossRef]

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322-424 (1999).
[CrossRef]

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689-1691 (2003).
[CrossRef]

J. Opt. Soc. Am. B (7)

JETP Lett. (1)

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319-322 (2007).
[CrossRef]

Nat. Phys. (1)

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

Opt. Commun. (1)

C.-K. Rosenberg, D. Anderson, M. Desaix, P. Johannisson, and M. Lisak, “Evolution of optical pulses towards wave breaking in highly nonlinear fibres,” Opt. Commun. 273, 272-277 (2007).
[CrossRef]

Opt. Express (7)

C. Finot and G. Millot, “Synthesis of optical pulses by use of similaritons,” Opt. Express 12, 5104-5109 (2004).
[CrossRef] [PubMed]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161-3170 (2006).
[CrossRef] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617-7622 (2006).
[CrossRef] [PubMed]

B. Burgoyne, N. Godbout, and S. Lacroix, “Nonlinear pulse propagation in optical fibers using second order moments,” Opt. Express 15, 10075-10090 (2007).
[CrossRef] [PubMed]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (2)

L. Boivin and B. C. Collings, “Spectrum slicing of coherent sources in optical communications,” Opt. Fiber Technol. 7, 1-20 (2001).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39, 1115-1131 (2007).
[CrossRef]

Phys. Rev. A (1)

R. H. Stolen and Q. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Phys. Rev. Lett. (2)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47, 910-913 (1981).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kruhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Other (5)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98 (1998), pp. 475-476.

G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).

C. Jirauschek, F. Ö. Ilday, and F. X. Kärtner, “A semi-analytic theory of the self-similar laser oscillator,” in Nonlinear Guided Waves and Their Applications (NLGW), Technical Digest (CD) (Optical Society of America, 2005), paper WC4.

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication (2000), Paper ThA1.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Clean similariton generation from an initial pulse optimized by the backward propagation method,” in Conference on Lasers and Electro-Optics (CLEO US) (IEEE, 2004), Paper CTuBB51113-51114.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Characteristic parameters computed for pulse analysis (a) in the temporal domain and (b) in the spectral domain.

Fig. 2
Fig. 2

Mixed spectral–temporal representation of the optical pulse at various propagation lengths.

Fig. 3
Fig. 3

Computed evolution of the temporal properties of initial Gaussian pulse versus its propagation distance ξ and N number: (a) broadening factor of the temporal FWHM; (b) peak-power decrease factor. The solid white curve is the analytical WB boundary of Eq. (10).

Fig. 4
Fig. 4

Computed evolution of various pulse properties: (a) slope S; (b) parameter F; (c) linear slope of the temporal chirp coefficient. The analytical prediction of the WB boundary in Eq. (10) is plotted as solid white curve.

Fig. 5
Fig. 5

Computed evolution of the pulse spectral properties: (a) 3 dB spectral broadening factor; (b) maximum spectral broadening for Gaussian and sech initial pulses. Numerical results are plotted with black diamonds (Gaussian pulses) or with gray circles (sech pulses). The solid lines are the theoretical results from Eq. (16) (black line, for Gaussian initial pulses) or Eq. (18) (gray line, for initial sech pulses); (c) Evolution of the 20 dB spectral width; (d) ratio between the 3 and 20 dB spectral widths.

Fig. 6
Fig. 6

Computed evolution of the pulse spectral properties: (a) evolution of the fraction of pulse energy contained in the central part of its spectrum ( 3 dB bandwidth); (b) evolution of the pulse spectral ripple. The solid white curve indicates the analytical WB boundary of Eq. (10).

Fig. 7
Fig. 7

Computed evolution of the energy fraction stored in the central region of the pulse spectrum, for a (a) sech pulse or for a (b) parabolic pulse. The prediction of Eq. (17) is shown with a black solid curve.

Fig. 8
Fig. 8

Experimental setup.

Fig. 9
Fig. 9

Experimental maps for: (a) the evolution of the 3 dB spectral width; (b) the 20 dB spectral width; (c) the spectral ripple. Crosses indicate discarded data points where Raman scattering was significant. The analytical predictions from Eq. (17) are plotted as a white solid curve.

Fig. 10
Fig. 10

Map showing the computed evolution of temporal slope S of the pulse for: (a) a lossy fiber with δ = 200 dB ; (b) or an amplifying fiber with δ = 200 dB . Theoretical borders given by Eq. (20) for losses and gain are plotted using white dashed or dashed-dotted curves, respectively. The solid white curve represents the lossless case.

Fig. 11
Fig. 11

Computed output spectra of an initially Gaussian pulse, after propagation in a normally dispersive fiber until the WB distance of Eq. (20) (black curves) or at 1.5 ξ WB (gray curves) for N = 40 : (a) case of a lossy fiber; (b) case of an amplifying fiber.

Fig. 12
Fig. 12

(a) Computed evolution of the FWHM temporal pulse broadening for various N values ( N = 5 , 15, 25 and 35; solid curves, decreasing gray levels from black to light gray). Computed evolutions are compared with the corresponding asymptotic evolutions as described by Eq. (22) (dashed lines). Filled round points indicate the WB distance as it is predicted by Eq. (20); (b) computed evolution of the misfit parameter M.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

i ψ z = i α 2 ψ k 2 i k β k k ! k ψ T k γ ( 1 + i ω 0 T ) ψ T R ( T ) ψ ( T T ) 2 d T ,
i ψ z = β 2 2 2 ψ T 2 γ ψ 2 ψ i α 2 ψ .
i u ξ = 1 2 2 u τ 2 u 2 u i δ 2 u ,
u ( ξ , τ ) = N U , U ( ξ , τ ) = ψ P C , τ = T T 0 , δ = α L D , ξ = z L D .
L D = T 0 2 β 2 , L NL = 1 γ P C , N = L D L NL .
S = 2 u 1 2 u 10 2 τ 1 τ 10 τ 3 u 0 2 1.39 τ 3 τ 10 τ 1 .
u 2 ( τ ) = ( u 0 2 + u 2 τ ) τ = 0 τ + ( 2 u 2 τ 2 ) τ = 0 τ 2 2 = ( u 0 2 + 2 u 2 τ 2 ) τ = 0 τ 2 2 .
F = ( 2 u 2 τ 2 ) τ = 0 τ 3 2 u 0 2 .
C nl ( ξ , τ ) = ξ τ ( u 2 ( 0 , τ ) ) .
ξ WB = 1 4 exp ( 3 2 ) N 2 1 ,
ξ WB N exp ( 3 4 ) 2 constant .
ξ N = 2.1 = constant .
δ C nl = δ ξ F u 0 2 τ 3 2 τ .
C nl Gauss ( ξ , τ ) = 2 ξ N 2 τ exp ( τ 2 ) ,
Δ C nl Gauss ( ξ ) = max ( C nl Gauss ( ξ , τ ) ) min ( C nl Gauss ( ξ , τ ) ) = 4 2 ξ N 2 e 1 2 .
exp ( 1 4 ) 2 ln ( 2 ) 0.44 π N 1.1 N .
ξ WBS = 3 2 1 N 2 + 1 3 2 1 N .
2 3 2 3 π 2 ln ( 1 + 2 ) 0.31 N .
C nl ( ξ , τ ) = 1 exp ( ξ δ ) δ τ ( u 2 ( 0 , τ ) ) .
ξ WB 1 exp ( ξ WB δ ) δ = 1 4 exp ( 3 2 ) N 2 .
ξ WB ξ WB eff = 1 4 exp ( 3 2 ) N 2 .
τ 3 ( ξ , N ) τ 3 ( ξ = 0 ) = 3 2 ln ( 2 ) ( π 2 N 2 δ 2 ) 1 3 exp ( δ ξ 3 ) .
M 2 = [ u 2 p 2 ] 2 d τ u 4 d τ .

Metrics