Abstract

We present a theoretical model and experimental demonstration of an all-optical switching process occurring in twist alignment dye-doped nematic liquid crystal cells. A Landau–deGennes theory is applied together with the thermal buildup and diffusion equation to analyze the laser-induced temperature, the order parameter, and the birefringence changes in the liquid crystal cell. The resulting transmission switching processes are calculated using a modified Jones matrix method. Experimental observations of the switching processes in cells of varying thicknesses and their dependence on the input optical power are in good agreement with theoretical predictions. We have also studied the dynamics of the switching processes and observed microseconds switching times. These studies demonstrate the possibility of low-threshold power and microseconds speed switching applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo, and S.-L. Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freederick's transition,” Appl. Phys. Lett. 37, 3-4 (1980).
    [Crossref]
  2. D. Fekete, J. Au Yeung, and A. Yariv, “Phase conjugate reflection by degenerate four wave mixing in a nematic crystal in the isotropic phase,” Opt. Lett. 5, 51-53 (1980).
    [Crossref] [PubMed]
  3. I. C. Khoo and R. Normandin, “Nanosecond laser induced optical wave mixing and ultrasonic wave generation in the nematic phase of liquid crystals,” Opt. Lett. 9, 285-287 (1984).
    [Crossref] [PubMed]
  4. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
    [Crossref]
  5. L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
    [Crossref]
  6. I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
    [Crossref]
  7. I. C. Khoo and S. Shepard, “Submillisecond grating diffractions in nematic liquid crystal film,” J. Appl. Phys. 54, 5491-5493 (1983).
    [Crossref]
  8. P. Pagliusi, R. Macdonald, S. Busch, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632-1638 (2001).
    [Crossref]
  9. M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
    [Crossref]
  10. H. I. Eichler and R. Macdonald, “Flow alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666-2669 (1991).
    [Crossref] [PubMed]
  11. A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
    [Crossref]
  12. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
    [Crossref]
  13. I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722-6733 (2000).
    [Crossref]
  14. I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
    [Crossref]
  15. I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255 (1998).
    [Crossref]
  16. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
    [Crossref]
  17. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471-482 (1998).
    [Crossref] [PubMed]
  18. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
    [Crossref]
  19. I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
    [Crossref]
  20. See, for example, P. Sheng, “Boundary-layer phase transition in nematic liquid crystals,” Phys. Rev. A 26, 1610-1617 (1982).
    [Crossref]

2007 (1)

I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
[Crossref]

2004 (1)

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

2002 (1)

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

2001 (1)

2000 (2)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722-6733 (2000).
[Crossref]

1999 (1)

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

1998 (2)

1997 (1)

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

1991 (2)

H. I. Eichler and R. Macdonald, “Flow alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666-2669 (1991).
[Crossref] [PubMed]

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

1986 (2)

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
[Crossref]

L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
[Crossref]

1984 (1)

1983 (1)

I. C. Khoo and S. Shepard, “Submillisecond grating diffractions in nematic liquid crystal film,” J. Appl. Phys. 54, 5491-5493 (1983).
[Crossref]

1982 (1)

See, for example, P. Sheng, “Boundary-layer phase transition in nematic liquid crystals,” Phys. Rev. A 26, 1610-1617 (1982).
[Crossref]

1980 (2)

I. C. Khoo, and S.-L. Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freederick's transition,” Appl. Phys. Lett. 37, 3-4 (1980).
[Crossref]

D. Fekete, J. Au Yeung, and A. Yariv, “Phase conjugate reflection by degenerate four wave mixing in a nematic crystal in the isotropic phase,” Opt. Lett. 5, 51-53 (1980).
[Crossref] [PubMed]

Assanto, G.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Busch, S.

Chen, P. H.

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471-482 (1998).
[Crossref] [PubMed]

Chen, Z.

Cidney, R. S.

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

Cipparrone, G.

De Luca, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Di Fabrizio, M.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

Eichler, H. I.

H. I. Eichler and R. Macdonald, “Flow alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666-2669 (1991).
[Crossref] [PubMed]

Fekete, D.

Francescangeli, O.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

Guenther, B. D.

Huignard, J. P.

L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
[Crossref]

Ikeda, T.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Kaczmarek, M.

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

Kanazawa, A.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Khoo, I. C.

I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
[Crossref]

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722-6733 (2000).
[Crossref]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255 (1998).
[Crossref]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471-482 (1998).
[Crossref] [PubMed]

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

I. C. Khoo and R. Normandin, “Nanosecond laser induced optical wave mixing and ultrasonic wave generation in the nematic phase of liquid crystals,” Opt. Lett. 9, 285-287 (1984).
[Crossref] [PubMed]

I. C. Khoo and S. Shepard, “Submillisecond grating diffractions in nematic liquid crystal film,” J. Appl. Phys. 54, 5491-5493 (1983).
[Crossref]

I. C. Khoo, and S.-L. Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freederick's transition,” Appl. Phys. Lett. 37, 3-4 (1980).
[Crossref]

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
[Crossref]

Kreuzer, M.

Liang, Y.

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722-6733 (2000).
[Crossref]

Lindquist, R. G.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

Liou, J.

I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
[Crossref]

LoPresti, P. G.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

Lucchetti, L.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

Macdonald, R.

Mansfield, R. J.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

Maurin, J.

L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
[Crossref]

Michael, R. R.

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

Normandin, R.

Pagliusi, P.

Park, J.-H.

I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
[Crossref]

Peccianti, M.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Richard, L.

L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
[Crossref]

Sheng, P.

See, for example, P. Sheng, “Boundary-layer phase transition in nematic liquid crystals,” Phys. Rev. A 26, 1610-1617 (1982).
[Crossref]

Shepard, S.

I. C. Khoo and S. Shepard, “Submillisecond grating diffractions in nematic liquid crystal film,” J. Appl. Phys. 54, 5491-5493 (1983).
[Crossref]

Shih, M.-Y.

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471-482 (1998).
[Crossref] [PubMed]

Shiono, T.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Shishido, A. T.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Simoni, F.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

Slussarenko, S.

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255 (1998).
[Crossref]

Sukhov, A. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
[Crossref]

Tabiryan, N. V.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
[Crossref]

Tamai, N.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Tsutsumi, O.

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

Umeton, C. P.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Wood, M. V.

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471-482 (1998).
[Crossref] [PubMed]

Wood, W. V.

Yariv, A.

Yeung, J. Au

Zel'dovich, B. Ya.

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
[Crossref]

Zhang, X.

Zhuang, S.-L.

I. C. Khoo, and S.-L. Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freederick's transition,” Appl. Phys. Lett. 37, 3-4 (1980).
[Crossref]

Appl. Phys. Lett. (3)

I. C. Khoo, and S.-L. Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freederick's transition,” Appl. Phys. Lett. 37, 3-4 (1980).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

I. C. Khoo, J.-H. Park, and J. Liou, “All-optical switching of continuous wave microseconds lasers with a dye-doped nematic liquid crystal,” Appl. Phys. Lett. 90, 151107 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Kaczmarek, M.-Y. Shih, R. S. Cidney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

A. T. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791-7796 (1997).
[Crossref]

J. Appl. Phys. (2)

I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. G. LoPresti, “Dynamics of picosecond laser-induced density, temperature, and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853-3859 (1991).
[Crossref]

I. C. Khoo and S. Shepard, “Submillisecond grating diffractions in nematic liquid crystal film,” J. Appl. Phys. 54, 5491-5493 (1983).
[Crossref]

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel'dovich, “The orientational optical nonlinearity of liquid crystals,” Mol. Cryst. Liq. Cryst. 136, 1-39 (1986).
[Crossref]

Opt. Commun. (2)

L. Richard, J. Maurin, and J. P. Huignard, “Phase conjugation with gain at CO2 laser line μl=10.6 μm from thermally induced gratings in nematic liquid crystals,” Opt. Commun. 57, 365-370 (1986).
[Crossref]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nolinearity in dye doped liquid crystals,” Opt. Commun. 233, 417-424 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

See, for example, P. Sheng, “Boundary-layer phase transition in nematic liquid crystals,” Phys. Rev. A 26, 1610-1617 (1982).
[Crossref]

Phys. Rev. E (1)

I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722-6733 (2000).
[Crossref]

Phys. Rev. Lett. (1)

H. I. Eichler and R. Macdonald, “Flow alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666-2669 (1991).
[Crossref] [PubMed]

Proc. IEEE (1)

I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897-1911 (1999).
[Crossref]

Other (1)

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental set up for all-optical switching using a TNLC cell placed between two crossed polarizers.

Fig. 2
Fig. 2

One-dimensional temperature distribution in the glass–liquid crystal–glass cell placed in air (not drawn to scale). Note that the glass windows are much thicker than the nematic layer ( t d ) .

Fig. 3
Fig. 3

Temperature and order parameter distribution for various incident laser powers near the switching threshold calculated using the following parameters: thermal conductivity of the glass k g ( = 1 W mK ); the thermal conductivity of the glass k LC ( = 0.15 W mK ); absorption constant α ( = 2 × 10 4 m 1 ); LC layer thickness: 50 μ m ; T NI = 308.24 K . (a) The temperature distribution; (b) the corresponding order parameter distribution; (c) the transmitted power as a function of the input power.

Fig. 4
Fig. 4

(a) Temperature distribution and (b) the corresponding order parameter distribution for various film thicknesses when the input power of 0.055 W is incident on the sample.

Fig. 5
Fig. 5

Transmitted power as a function of the input power for various film thicknesses.

Fig. 6
Fig. 6

(Color online) Transmitted power versus the input power for various physical parameters: (a) room temperature, (b) LC absorption coefficient, and (c) conductivity of the glass plate.

Fig. 7
Fig. 7

Experimental result for the transmitted power as a function of the input power for various film thicknesses.

Fig. 8
Fig. 8

(a) Theoretical prediction and (b) experimental observations of the switching threshold as a function of thickness.

Fig. 9
Fig. 9

Oscilloscope traces of the transmitted (upper curve) laser power for a step-on cw input laser (lower curve) through a methyl-red-doped TNLC. Laser wavelength: 532 nm ; laser beam size: 0.3 mm ; LC thickness: 30 μ m ; methyl-red concentration: 0.5%. Time scale: 50 μ s div .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

q = k g d T d z ,
T L ( z ) = C z + D ,
T R ( z ) = E z + F ,
d d z ( k LC d T d z ) + q ̇ = 0 .
q ̇ = d I d z = d d z ( I 0 e α z ) = I 0 α e α z .
T ( z ) = A z + B I 0 k LC α e α z ,
A = e d α I 0 ( k g + e α d k g + t α k LC + e α d t α k LC ) α k LC ( d k g + 2 t k LC ) ,
B = I 0 α k LC + e α d t I 0 ( k g e α d k g + d e α d α k g t α k LC + e α d t α k LC ) α k g ( d k g + 2 t k LC ) + T 0 ,
C = e d α I 0 ( k g e α d k g + d e α d α k g t α k LC + e α d t α k LC ) α k g ( d k g + 2 t k LC ) ,
D = e d α t I 0 ( k g e α d k g + d e α d α k g t α k LC + e α d t α k LC ) α k g ( d k g + 2 t k LC ) + T 0 ,
E = e d α I 0 ( k g + e α d k g d α k g t α k LC + e α d t α k LC ) α k g ( d k g + 2 t k LC ) ,
F = e d α ( ( d + t ) I 0 ( ( 1 e α d + d α ) k g ( 1 + e α d ) t α k LC ) + e α d α k g ( d k g + 2 t k LC ) T 0 ) α k g ( d k g + 2 t k LC ) .
f = a ( T ( z ) T * ) S ( z ) 2 + b S ( z ) 3 + c S ( z ) 4 + L ( d S ( z ) d z ) 2 g 1 S 1 g 2 S 2 .
f S d d z ( f ( S z ) ) = 0 ,
( f ( S z ) ) 1 + f S 1 S 1 = 0 , ( f ( S z ) ) 2 + f S 2 S 2 = 0 .
2 a ( T ( z ) T * ) S ( z ) + 3 b S ( z ) 2 + 4 c S ( z ) 3 2 L ( d 2 S ( z ) d z 2 ) = 0 ,
2 L d S d z g 1 = 0 , 2 L d S d z g 2 = 0 .
Ψ out ( d ) = ( E x E y ) = P ( ϕ Exit ) m = 1 M [ S 1 ( ϕ m ) G S ( ϕ m ) ] ( cos ϕ Ent sin ϕ Ent ) ,
P ( ϕ ) = ( cos 2 ϕ cos ϕ sin ϕ sin ϕ cos ϕ sin 2 ϕ ) ,
S ( ϕ m ) = ( cos ϕ m sin ϕ m sin ϕ m cos ϕ m ) , G = ( e i ( γ 2 ) 0 0 e i ( γ 2 ) ) .

Metrics