Abstract

We report on a phase-controlled polarization coherent anti-Stokes Raman scattering (CARS) microscopy for high-sensitivity and high-contrast molecule vibrational imaging. By changing the phase difference between the two CARS signals (i.e., a weak resonant CARS and a strong nonresonant CARS signal) simultaneously generated from the same focal volume of the sample, the complete constructive (in-phase) and destructive (out-of-phase) interference CARS images can be acquired for image processing. The directly digital subtraction between the constructive and destructive interference CARS images yields a fivefold improvement in signal-to-background ratios compared with conventional CARS while providing an approximately 20-fold amplification of a resonant CARS signal compared with conventional polarization CARS imaging. We demonstrate this technique by imaging 1μm polystyrene beads and unstained human epithelial cells in aqueous environments.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
    [CrossRef] [PubMed]
  3. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076-12087 (2007).
    [CrossRef] [PubMed]
  4. E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
    [CrossRef] [PubMed]
  5. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  6. X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
    [CrossRef] [PubMed]
  7. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
    [CrossRef] [PubMed]
  8. G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
    [CrossRef] [PubMed]
  9. H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
    [CrossRef] [PubMed]
  10. X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
    [CrossRef] [PubMed]
  11. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
    [CrossRef] [PubMed]
  12. C. Liu, Z. Huang, F. Lu, W. Zheng, D. W. Hutmacher, and C. Sheppard, “Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express 15, 4118-4131 (2007).
    [CrossRef] [PubMed]
  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  14. A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  15. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).
    [CrossRef]
  16. J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
    [CrossRef]
  17. S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).
  18. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001).
    [CrossRef]
  19. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
    [CrossRef]
  20. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM-CARS) microscopy,” Opt. Lett. 31, 1872-1874 (2006).
    [CrossRef] [PubMed]
  21. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  22. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33, 602-604 (2008).
    [CrossRef] [PubMed]
  23. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  24. F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 123901 (2008).
    [CrossRef]
  25. S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Non-Linear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), p. 253.
  26. M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. Chem. 8, 2156-2169 (2007).
    [CrossRef] [PubMed]
  27. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
    [CrossRef]

2008 (2)

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 123901 (2008).
[CrossRef]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33, 602-604 (2008).
[CrossRef] [PubMed]

2007 (4)

C. Liu, Z. Huang, F. Lu, W. Zheng, D. W. Hutmacher, and C. Sheppard, “Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging,” Opt. Express 15, 4118-4131 (2007).
[CrossRef] [PubMed]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076-12087 (2007).
[CrossRef] [PubMed]

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. Chem. 8, 2156-2169 (2007).
[CrossRef] [PubMed]

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

2006 (4)

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM-CARS) microscopy,” Opt. Lett. 31, 1872-1874 (2006).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
[CrossRef] [PubMed]

2005 (3)

G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

2004 (2)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

2003 (1)

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

2002 (2)

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

2001 (4)

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

1999 (1)

A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1979 (1)

J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
[CrossRef]

1978 (1)

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Adachi, Y.

S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Non-Linear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), p. 253.

Akhmanov, S. A.

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

Boppart, S. A.

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Bunkin, A. F.

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Cheng, J. X.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

de Boeij, W. P.

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Evans, C. L.

Fu, Y.

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Ganikhanov, F.

Holtom, G. R.

A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Huang, Z.

Hutmacher, D. W.

Ivanov, S. G.

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Kamisuki, T.

S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Non-Linear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), p. 253.

Kesari, S.

Koroteev, N. I.

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Langohr, I. M.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Le, T. T.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Liu, C.

Locker, M. J.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

Lu, F.

Maeda, S.

S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Non-Linear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), p. 253.

Marks, D. L.

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Muller, M.

G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. Chem. 8, 2156-2169 (2007).
[CrossRef] [PubMed]

Nan, X.

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
[CrossRef] [PubMed]

Ouder, J. L.

J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
[CrossRef]

Pautot, S.

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

Potma, E.

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Potma, E. O.

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Puoris'haag, M.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Rinia, H. A.

G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Saar, B. G.

Shen, Y. R.

J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Sheppard, C.

Shi, R.

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Smith, R. W.

J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
[CrossRef]

Sturek, M.

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

van Haastert, P. J.

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Volkmer, A.

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Wang., H.

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Weitz, D. A.

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

Wiersma, D. A.

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Wong, S. T. C.

Wurpel, G. W.

G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076-12087 (2007).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM-CARS) microscopy,” Opt. Lett. 31, 1872-1874 (2006).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
[CrossRef] [PubMed]

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001).
[CrossRef]

A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Xu, X.

Yang, W.

X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Young, G. S.

Yu, J.

X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Zheng, W.

Zickmund, P.

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. Chem. 8, 2156-2169 (2007).
[CrossRef] [PubMed]

Zumbushch, A.

A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

J. L. Ouder, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92, 123901 (2008).
[CrossRef]

Biophys. J. (2)

H. Wang.Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 91, 728-735 (2006).
[CrossRef] [PubMed]

Chem. Phys. Chem. (1)

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” Chem. Phys. Chem. 8, 2156-2169 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12, 054007 (2007).
[CrossRef] [PubMed]

J. Microsc. (1)

G. W. Wurpel, H. A. Rinia, and M. Muller, “Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy,” J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high-sensitivity,” J. Phys. Chem. 105, 1277-1280 (2001).
[CrossRef]

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (3)

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

A. Zumbushch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (3)

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 9826-9830 (2003).
[CrossRef] [PubMed]

Science (1)

X. S. Xie, J. Yu, and W. Yang, “Living cells as test tubes,” Science 312, 228-230 (2006).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. A. Akhmanov, A. F. Bunkin, S. G. Ivanov, and N. I. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry,” Sov. Phys. JETP 47, 667-677 (1978).

Other (2)

S. Maeda, T. Kamisuki, and Y. Adachi, “Condensed phase CARS,” in Advances in Non-Linear Spectroscopy, R.J. H.Clark and R.E.Hester, eds. (Wiley, 1988), p. 253.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the polarization vectors for the pump ( E p ) and the two Stokes fields ( E S 1 and E S 2 ), the generated resonant CARS ( P ( 3 ) r ) and nonresonant CARS ( ( P ( 3 ) nr ) radiations, and the orientation of the polarization analyzer in the phase-controlled polarization CARS microscopy.

Fig. 2
Fig. 2

Schematic of the phase-controlled polarization CARS microscope. Two perpendicularly polarized Stokes beams and the strong pump beam are combined collinearly and introduced into a laser scanning confocal microscope for CARS imaging. ω S 1 , ω S 2 , and ω p stand for the central frequencies of the first and the second Stokes fields and the pump field, respectively. BS, beam splitter; HW, half-wave plate; QW, quarter-wave plate; PBS, polarizing beam splitter; DM, dichroic mirror; A, polarization analyzer; F, filter set (a short-pass filter cutoff at 700 nm and a band pass filter centered at 650 nm with FWHM 80 nm ); M, mirror; PMT, photomultiplier tube.

Fig. 3
Fig. 3

Comparison of spontaneous Raman spectrum and CARS spectra of a 1 μ m polystyrene bead spin coated on a coverslip and covered in water acquired under the conditions of conventional CARS and phase-controlled P-CARS, respectively. The pump frequency was fixed at 11933 cm 1 while the Stokes frequency was tuned from 8733 to 8983 cm 1 . The pump and the Stokes powers on the sample were 2 and 0.5 mW , respectively. The spontaneous Raman spectrum is recorded using a microRaman spectrometer system (inVia, Renishaw, UK).

Fig. 4
Fig. 4

Phase-controlled P-CARS signal of a 1 μ m polystyrene bead as a function of voltages applied to the PZT.

Fig. 5
Fig. 5

Comparison of CARS images (aromatic C H stretching vibration at 3054 cm 1 ) of 1 μ m polystyrene beads immersed in water for (a) constructive interference image, (b) destructive interference image, (c) difference between images (a) and (b) (i.e., phase-controlled P-CARS image), and (d) conventional P-CARS image. (e)–(h) Corresponding intensity profiles across the lines indicated in the images (a)–(d), respectively. The average powers of the pump beam ( 838 nm ) and the Stokes beam ( 1126 nm ) on the sample are 2 and 0.5 mW , respectively, at a repetition rate of 76 MHz .

Fig. 6
Fig. 6

CARS images (aliphatic C H stretching vibration at 2870 cm 1 ) of unstained human epithelial cells in aqueous environments. (a) Constructive interference image, (b) destructive interference image, (c) phase-controlled P-CARS image, and (d) conventional P-CARS image. (e)–(h) Corresponding intensity profiles across the lines indicated the images (a)–(d), respectively. The average powers of the pump beam ( 838 nm ) and the Stokes beam ( 1103 nm ) on the sample are 1.8 and 0.4 mW , respectively, at a repetition rate of 76 MHz .

Fig. 7
Fig. 7

CARS images (aliphatic C H stretching vibration at 2870 cm 1 ) of unstained human epithelial cells in aqueous environments. (a) Conventional CARS due to the induced polarization P 2 and (b) processed CARS image using the algorithm of I pc 2 16 P 2 2 by dividing the square of the phase-controlled CARS image [Fig. 6c] by the conventional CARS image [Fig. 7a] for vibrational modes quantification. (c),(d) Corresponding intensity profiles across the lines indicated the images (a) and (b), respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P ( 3 ) = χ ( 3 ) E p E p E S * = ( χ ( 3 ) r + χ ( 3 ) nr ) E p E p E S * ,
χ ( 3 ) r = j R j ( ω p ω S ) Ω j + i Γ j .
I CARS E p 2 E S * 2 χ ( 3 ) r + χ ( 3 ) nr 2 χ ( 3 ) r 2 + χ ( 3 ) nr 2 + 2 χ ( 3 ) nr Re ( χ ( 3 ) r ) .
P 1 x ( 3 ) nr = 3 χ 1111 ( 3 ) nr E P 2 E S 1 * cos φ ,
P 1 y ( 3 ) nr = 3 χ 2112 ( 3 ) nr E P 2 E S 1 * sin φ .
P 1 ( 3 ) nr = 3 χ 1111 ( 3 ) nr E P 2 E S 1 * cos φ cos θ .
tan θ = ρ nr tan φ ,
P 1 x ( 3 ) r = 3 χ 1111 ( 3 ) r E P 2 E S 1 * cos φ ,
P 1 y ( 3 ) r = 3 χ 2112 ( 3 ) r E P 2 E S 1 * sin φ .
P 1 = 3 χ 1111 ( 3 ) r E p 2 E S 1 * ( cos φ sin θ ρ r sin φ cos θ ) .
P 2 x ( 3 ) = 3 ( χ 1111 ( 3 ) r + χ 1111 ( 3 ) nr ) E P 2 E S 2 * sin φ ,
P 2 y ( 3 ) = 3 ( χ 2112 ( 3 ) r + χ 2112 ( 3 ) nr ) E P 2 E S 2 * cos φ .
P 2 = 3 E p 2 E S 2 * χ 1111 ( 3 ) r ( sin φ sin θ + ρ r cos φ cos θ ) + 3 E p 2 E S 2 * χ 1111 ( 3 ) nr ( sin φ sin θ + ρ nr cos φ cos θ ) .
I Det = P 1 2 + P 2 2 + 2 P 1 P 2 cos ϕ ,
I max = P 1 2 + P 2 2 + 2 P 1 P 2 ,
I min = P 1 2 + P 2 2 2 P 1 P 2 .
I pc = I max I min = 4 P 1 P 2 = 36 χ 1111 ( 3 ) r E p 2 E S 1 * ( cos φ sin θ ρ r sin φ cos θ ) E p 2 E S 2 * χ 1111 ( 3 ) r ( sin φ sin θ + ρ r cos φ cos θ ) + E p 2 E S 2 * χ 1111 ( 3 ) nr ( sin φ sin θ + ρ nr cos φ cos θ ) .

Metrics