Abstract

Ytterbium enriched in Yb176 is used for the production of the Lu177 radioisotope, which has applications in cancer treatment. We have theoretically studied the two-step resonant, three-step photoionization of the Yb176 isotope using the density-matrix approach. To simulate experimentally realistic conditions, the Doppler averaging, magnetic sublevel degeneracy, time–varying Rabi frequencies, ionization rate, angular divergence, and laser bandwidth have all been incorporated into the theoretical model. Calculations have been carried out to identify the optimized Rabi frequencies for evaluating the separation factor. The effect of the laser line shape on the excitation profile has also been thoroughly studied. We could obtain large separation factors of 5000 for the Yb176 isotope, and the excitation conditions identified in this work may be utilized in the separation of the desired isotope.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
    [CrossRef]
  2. K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
    [CrossRef]
  3. H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).
  4. S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
    [CrossRef]
  5. A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
    [CrossRef]
  6. M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionization of the low abundant Yb168 isotope,” J. Phys. B 31, 261-273 (1998).
    [CrossRef]
  7. V. S. Letokhov and V. I. Mishin, “Highly selective multistep ionization of atoms by laser radiation,” Opt. Commun. 29, 168-171 (1979).
    [CrossRef]
  8. W. A. van Wijngaarden and J. Li, “Measurement of isotope shifts and hyperfine splittings of ytterbium by means of acousto-optic modulation,” J. Opt. Soc. Am. B 11, 2163-2166 (1994).
    [CrossRef]
  9. P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Calculation of Zr91 optical selectivities in two-color resonant three-photon ionization schemes,” J. Opt. Soc. Am. B 20, 1807-1816 (2003).
    [CrossRef]
  10. P. V. Kirankumar, M. Sankari, G. V. S. G. Acharyulu, and M. V. Suryanarayana, “Isotope selective excitation of Ca41 isotope in Doppler-free two-photon continuous-wave excitation: a case study,” Appl. Opt. 45, 8979-8989 (2006).
    [CrossRef]
  11. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).
  12. P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199-2202 (1989).
    [CrossRef] [PubMed]
  13. A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
    [CrossRef] [PubMed]
  14. P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547-L551 (1979).
    [CrossRef]
  15. P. Zoller, “Saturation of two-level atoms in chaotic fields,” Phys. Rev. A 20, 2420-2423 (1979).
    [CrossRef]
  16. A. T. Georges and P. Lambropoulos, “Saturation and Stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991-1004 (1979).
    [CrossRef]
  17. P. Zoller, “ac Stark splitting in double optical resonance and resonance fluorescence by a nonmonochromatic chaotic field,” Phys. Rev. A 20, 1019-1031 (1979).
    [CrossRef]
  18. A. T. Georges, “Resonance fluorescence in Markovian stochastic fields,” Phys. Rev. A 21, 2034-2049 (1980).
    [CrossRef]
  19. N. F. Ramsey, Molecular Beams (Oxford University Press, 1956).
  20. B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
    [CrossRef]
  21. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).
  22. D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
    [CrossRef]

2006 (2)

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

P. V. Kirankumar, M. Sankari, G. V. S. G. Acharyulu, and M. V. Suryanarayana, “Isotope selective excitation of Ca41 isotope in Doppler-free two-photon continuous-wave excitation: a case study,” Appl. Opt. 45, 8979-8989 (2006).
[CrossRef]

2003 (2)

K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
[CrossRef]

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Calculation of Zr91 optical selectivities in two-color resonant three-photon ionization schemes,” J. Opt. Soc. Am. B 20, 1807-1816 (2003).
[CrossRef]

2000 (1)

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

1998 (1)

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionization of the low abundant Yb168 isotope,” J. Phys. B 31, 261-273 (1998).
[CrossRef]

1996 (1)

S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
[CrossRef]

1995 (1)

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

1994 (1)

1991 (1)

B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
[CrossRef]

1990 (1)

A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
[CrossRef] [PubMed]

1989 (1)

P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199-2202 (1989).
[CrossRef] [PubMed]

1981 (1)

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

1980 (1)

A. T. Georges, “Resonance fluorescence in Markovian stochastic fields,” Phys. Rev. A 21, 2034-2049 (1980).
[CrossRef]

1979 (5)

V. S. Letokhov and V. I. Mishin, “Highly selective multistep ionization of atoms by laser radiation,” Opt. Commun. 29, 168-171 (1979).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547-L551 (1979).
[CrossRef]

P. Zoller, “Saturation of two-level atoms in chaotic fields,” Phys. Rev. A 20, 2420-2423 (1979).
[CrossRef]

A. T. Georges and P. Lambropoulos, “Saturation and Stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991-1004 (1979).
[CrossRef]

P. Zoller, “ac Stark splitting in double optical resonance and resonance fluorescence by a nonmonochromatic chaotic field,” Phys. Rev. A 20, 1019-1031 (1979).
[CrossRef]

Acharyulu, G. V. S. G.

Borisov, S. K.

S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
[CrossRef]

Cha, Y.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Choe, A. S.

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

Cutler, C. S.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

Ehrhardt, G. J.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

Georges, A. T.

A. T. Georges, “Resonance fluorescence in Markovian stochastic fields,” Phys. Rev. A 21, 2034-2049 (1980).
[CrossRef]

A. T. Georges and P. Lambropoulos, “Saturation and Stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991-1004 (1979).
[CrossRef]

Han, J.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Hashimoto, K.

K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
[CrossRef]

Jeong, D.-Y.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Jurisson, S. S.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

Kim, C.-J.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Kim, T.-S.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Kirankumar, P. V.

Krynetskii, B. B.

B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
[CrossRef]

Kuzmina, M. A.

S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
[CrossRef]

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

Kwon, D.-H.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Lambropoulos, P.

A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
[CrossRef] [PubMed]

P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199-2202 (1989).
[CrossRef] [PubMed]

A. T. Georges and P. Lambropoulos, “Saturation and Stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991-1004 (1979).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547-L551 (1979).
[CrossRef]

Lee, J.

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov and V. I. Mishin, “Highly selective multistep ionization of atoms by laser radiation,” Opt. Commun. 29, 168-171 (1979).
[CrossRef]

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

Levenson, M. D.

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

Li, J.

Lyras, A.

A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
[CrossRef] [PubMed]

P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199-2202 (1989).
[CrossRef] [PubMed]

Matsuoka, H.

K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
[CrossRef]

Mishin, V. A.

S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
[CrossRef]

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
[CrossRef]

Mishin, V. I.

V. S. Letokhov and V. I. Mishin, “Highly selective multistep ionization of atoms by laser radiation,” Opt. Commun. 29, 168-171 (1979).
[CrossRef]

Nam, S.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Nitz, D. E.

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

Park, H.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

Prokorhov, A. M.

B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford University Press, 1956).

Rhee, Y.

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

Sankari, M.

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Smith, A. V.

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

Smith, C. J.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

Smith, S. J.

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

Suryanarayana, M. V.

Tyler, T. T.

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

Uchida, S.

K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
[CrossRef]

van Wijngaarden, W. A.

Zoller, P.

P. Zoller, “ac Stark splitting in double optical resonance and resonance fluorescence by a nonmonochromatic chaotic field,” Phys. Rev. A 20, 1019-1031 (1979).
[CrossRef]

P. Zoller, “Saturation of two-level atoms in chaotic fields,” Phys. Rev. A 20, 2420-2423 (1979).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547-L551 (1979).
[CrossRef]

Zorman, B.

A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

Cancer Biother. Radiopharm. (1)

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, and S. S. Jurisson, “Current and potential therapeutic uses of lanthanide radioisotopes,” Cancer Biother. Radiopharm. 15, 531-545 (2000).
[CrossRef]

J. Appl. Spectrosc. (Russia) (1)

B. B. Krynetskii, V. A. Mishin, and A. M. Prokorhov, J. Appl. Spectrosc. (Russia) 54, 338 (1991).
[CrossRef]

J. Korean Phys. Soc. (1)

H. Park, D.-H. Kwon, Y. Cha, S. Nam, T.-S. Kim, J. Han, Y. Rhee, D.-Y. Jeong, and C.-J. Kim, “Laser isotope separation of Yb176 for medical applications,” J. Korean Phys. Soc. 49, 382-386 (2006).

J. Opt. Soc. Am. B (2)

J. Phys. B (3)

A. S. Choe, Y. Rhee, J. Lee, M. A. Kuzmina, and V. A. Mishin, “Selective photoionization of Yb168 in a three level atomic medium by the collinear propagation of laser pulses,” J. Phys. B 28, 3805-3820 (1995).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “Studies on the isotope selective photoionization of the low abundant Yb168 isotope,” J. Phys. B 31, 261-273 (1998).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547-L551 (1979).
[CrossRef]

J. Radioanal. Nucl. Chem. (1)

K. Hashimoto, H. Matsuoka, and S. Uchida, “Production of no-carrier-added Lu177 via the Yb176(n,γ)Yb177-->Lu177 process,” J. Radioanal. Nucl. Chem. 255, 575-579 (2003).
[CrossRef]

J. Russ. Laser Res. (1)

S. K. Borisov, M. A. Kuzmina, and V. A. Mishin, “A study of isotopically selective photoionization of ytterbium atoms for laser isotope separation,” J. Russ. Laser Res. 17, 332-345 (1996).
[CrossRef]

Opt. Commun. (1)

V. S. Letokhov and V. I. Mishin, “Highly selective multistep ionization of atoms by laser radiation,” Opt. Commun. 29, 168-171 (1979).
[CrossRef]

Phys. Rev. A (7)

P. Zoller, “Saturation of two-level atoms in chaotic fields,” Phys. Rev. A 20, 2420-2423 (1979).
[CrossRef]

A. T. Georges and P. Lambropoulos, “Saturation and Stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991-1004 (1979).
[CrossRef]

P. Zoller, “ac Stark splitting in double optical resonance and resonance fluorescence by a nonmonochromatic chaotic field,” Phys. Rev. A 20, 1019-1031 (1979).
[CrossRef]

A. T. Georges, “Resonance fluorescence in Markovian stochastic fields,” Phys. Rev. A 21, 2034-2049 (1980).
[CrossRef]

P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199-2202 (1989).
[CrossRef] [PubMed]

A. Lyras, B. Zorman, and P. Lambropoulos, “Theory of doubly resonant ionization by broad-band radiation applied to the determination of isotopic abundances,” Phys. Rev. A 42, 543-549 (1990).
[CrossRef] [PubMed]

D. E. Nitz, A. V. Smith, M. D. Levenson, and S. J. Smith, “Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes,” Phys. Rev. A 24, 288-293 (1981).
[CrossRef]

Other (3)

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

N. F. Ramsey, Molecular Beams (Oxford University Press, 1956).

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a typical two-step resonance, three-step photoionization scheme.

Fig. 2
Fig. 2

Ionization yield as a function of intensity of the excitation lasers.

Fig. 3
Fig. 3

One-dimensional line shape when the second excitation laser (a) is fixed at the resonance and (b) is scanned across the resonance.

Fig. 4
Fig. 4

(a) Two-dimensional line shape for monochromatic laser and Doppler free excitation conditions. The position of the nearest Yb 174 isotope is marked as cross. (b) Two-dimensional line shape for laser linewidth of 150 MHz and Doppler free excitation conditions. The position of the nearest Yb 174 isotope is marked with a cross. (c) Two-dimensional line shape for laser linewidth of 150 MHz and Doppler width of 100 MHz . The position of the nearest Yb 174 isotope is marked with a cross.

Tables (5)

Tables Icon

Table 1 Isotopic Abundance, the Thermal Neutron Absorption Cross Sections, and the Normalized Thermal Neutron Absorption Cross Sections of Natural Ytterbium Isotopes

Tables Icon

Table 2 Isotope Shifts and Hyperfine Frequency Positions of Various Isotopes Relative to Yb 176 Isotope

Tables Icon

Table 3 Separation Factor for the Yb 176 Isotope for Various Doppler Widths

Tables Icon

Table 4 Separation Factor for the Yb 176 Isotope for Various Laser Line Widths

Tables Icon

Table 5 Dependence of Separation Factor on the Cutoff Parameter for a Laser Linewidth of 150 MHz and a Doppler Width of 100 MHz

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

6 s 2 ( S 0 1 ) 555.6 nm 6 s 6 p ( P 1 3 ) 581.1 nm 4 f 13 6 s 2 6 p ( J = 2 ) 582.2 nm Yb +
E i ( t ) = [ ϵ i ( t ) e i ω i t + ϵ i * ( t ) e i ω i t ] e i ,
ρ ̇ 11 = i 2 ( Ω 1 * ρ 21 Ω 1 ρ 12 ) + 2 Γ 1 ρ 22 ,
ρ ̇ 22 = i 2 ( ρ 12 Ω 1 ρ 21 Ω 1 * ) + i 2 ( ρ 32 Ω 2 * ρ 23 Ω 2 ) + 2 Γ 2 ρ 33 2 Γ 1 ρ 22 ,
ρ ̇ 33 = i 2 ( ρ 23 Ω 2 ρ 32 Ω 2 * ) 2 ( Γ 2 + γ I ) ρ 33 ,
ρ ̇ 12 = i ( ρ 12 Δ 1 ρ 13 Ω 1 2 ) + i Ω 1 * 2 ( ρ 22 ρ 11 ) ( Γ 1 + 2 γ L 1 β 1 2 Δ 1 2 + β 1 2 ) ρ 12 ,
ρ ̇ 21 = i ( ρ 21 Δ 1 ρ 31 Ω 1 * 2 ) i Ω 1 2 ( ρ 22 ρ 11 ) ( Γ 1 + 2 γ L 1 β 1 2 Δ 1 2 + β 1 2 ) ρ 21 ,
ρ ̇ 13 = [ i ρ 13 ( Δ 1 + Δ 2 ) + i 2 ρ 23 Ω 1 * i 2 ρ 12 Ω 2 * ] ( Γ 2 + 2 γ L 1 β 1 2 Δ 1 2 + β 1 2 + 2 γ L 2 β 2 2 Δ 2 2 + β 2 2 + γ I ) ρ 13 ,
ρ ̇ 31 = [ i ρ 31 ( Δ 1 + Δ 2 ) i 2 ρ 32 Ω 1 + i 2 ρ 21 Ω 2 ] ( Γ 2 + 2 γ L 1 β 1 2 Δ 1 2 + β 1 2 + 2 γ L 2 β 2 2 Δ 2 2 + β 2 2 + γ I ) ρ 31 ,
ρ ̇ 23 = [ i ρ 23 Δ 2 + i 2 ρ 13 Ω 1 ] + i 2 Ω 2 * ( ρ 33 ρ 22 ) ( Γ 1 + Γ 2 + 2 γ L 2 β 2 2 Δ 2 2 + β 2 2 + γ I ) ρ 23 ,
ρ ̇ 32 = [ i ρ 32 Δ 2 + i 2 ρ 31 Ω 1 * ] i 2 Ω 2 ( ρ 33 ρ 22 ) ( Γ 1 + Γ 2 + 2 γ L 2 β 2 2 Δ 2 2 + β 2 2 + γ I ) ρ 32 .
2 γ L i β i 2 Δ i 2 + β i 2 , i = 1 , 2 .
P j = 1 ( 2 J + 1 ) M ρ j j .
Φ ( v ) = 2 α 4 v 3 exp ( v 2 α 2 ) d v ,
Ω ( t ) = Ω 0 I ( t ) ,
Γ ( t ) = Γ 0 I ( t ) ,
Ω odd = 2 × ( 3 g γ λ 3 8 π h c ) 1 2 × ( 2 F + 1 ) ( 2 F + 1 ) { J F I F J 1 } × ( F 1 F m q m ) I ,
Ω even = 2 × ( 3 g γ λ 3 8 π h c ) 1 2 × ( J 1 J m q m ) I ,
P ion = 1 ρ 11 ( t ) ρ 22 ( t ) ρ 33 ( t ) ,
α 176 = [ A 176 ( A A 176 ) ] e [ A 176 ( A A 176 ) ] n .

Metrics