Abstract

Multiple resonance transmission modes are generated in one-dimensional photonic heterostructure stacking with single-negative-permittivity and single-negative-permeability media layers. By varying the thickness ratio of the two kinds of stacking layers, the resonance modes are found to merge at the middle of the forbidden bandgap. Conditions for the merging of the resonance modes are obtained from the effective medium theory. The frequency, frequency interval, and number of the resonance modes can be tuned as desired by adjusting the period number or the layer thicknesses of the heterostructures. Furthermore, each resonance mode can be split into as many transmission peaks as required. Such resonance modes are insensitive to incident angle, which can be utilized to design omnidirectional and multichannel filters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  4. C. M. Bowden, J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: Introduction,” J. Opt. Soc. Am. B 10, 280-413 (1993).
  5. F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
    [CrossRef]
  6. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
    [CrossRef]
  7. Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
    [CrossRef]
  8. D. R. Frekin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753-1755 (2002).
    [CrossRef]
  9. A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
    [CrossRef]
  10. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
    [CrossRef]
  11. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
    [CrossRef]
  12. Y. H. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92, 011925 (2008).
    [CrossRef]
  13. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
    [CrossRef]
  14. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
    [CrossRef]
  15. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
    [CrossRef]
  16. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
    [CrossRef]
  17. A. Lakhtakia and J. A. Sherwin, “Orthorhombic materials and perfect lenses,” Int. J. Infrared Millim. Waves 24, 19-23 (2003).
    [CrossRef]
  18. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
    [CrossRef]
  19. H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819-830 (2003).
    [CrossRef]
  20. L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
    [CrossRef]

2008 (1)

Y. H. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92, 011925 (2008).
[CrossRef]

2006 (4)

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
[CrossRef]

2004 (2)

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

2003 (4)

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

A. Lakhtakia and J. A. Sherwin, “Orthorhombic materials and perfect lenses,” Int. J. Infrared Millim. Waves 24, 19-23 (2003).
[CrossRef]

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819-830 (2003).
[CrossRef]

2002 (4)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
[CrossRef]

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

D. R. Frekin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

2000 (1)

F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

1993 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Asakawa, K.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Aù, A.

A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Bowden, C. M.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Chen, H.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

Chen, L. Y.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Chen, X. S.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Chen, Y. H.

Y. H. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92, 011925 (2008).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
[CrossRef]

Dong, J. W.

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Dowling, J. P.

Eleftheriades, G. V.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
[CrossRef]

Engheta, N.

A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

Everitt, H. O.

Frekin, D. R.

D. R. Frekin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Gao, L.

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
[CrossRef]

He, L.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

Ikeda, N.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Ishikawa, H.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Iyer, A. K.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
[CrossRef]

Jiang, H. T.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Kremer, P. C.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia and J. A. Sherwin, “Orthorhombic materials and perfect lenses,” Int. J. Infrared Millim. Waves 24, 19-23 (2003).
[CrossRef]

Lan, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Lee, H. Y.

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819-830 (2003).
[CrossRef]

Li, H. Q.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

Liu, N. H.

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

Lu, H.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Lu, W.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Ming, N. B.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Nishikawa, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Qiao, F.

F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

Qin, Q.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Ron, A.

D. R. Frekin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Sherwin, J. A.

A. Lakhtakia and J. A. Sherwin, “Orthorhombic materials and perfect lenses,” Int. J. Infrared Millim. Waves 24, 19-23 (2003).
[CrossRef]

Sugimoto, Y.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Tang, C. J.

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
[CrossRef]

Wan, J.

F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

Wang, H. Z.

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 23, 2237-2240 (2006).
[CrossRef]

Wang, L.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Wang, S. M.

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
[CrossRef]

Wang, Z. S.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Wu, X.

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

Wu, Y. G.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yao, T.

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819-830 (2003).
[CrossRef]

Yuan, C. S.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Zhang, C.

F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

Zhang, L. W.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

Zhang, Y. W.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

Zhu, S. N.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Zhu, S. Y.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

Zhu, Y. Y.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Zi, J.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629-1631 (2004).
[CrossRef]

D. R. Frekin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Y. H. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92, 011925 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. Lakhtakia and J. A. Sherwin, “Orthorhombic materials and perfect lenses,” Int. J. Infrared Millim. Waves 24, 19-23 (2003).
[CrossRef]

J. Appl. Phys. (1)

H. Y. Lee and T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819-830 (2003).
[CrossRef]

J. Magn. Magn. Mater. (1)

L. Gao, C. J. Tang, and S. M. Wang, “Photonic band gap from a stack of single-negative materials,” J. Magn. Magn. Mater. 301, 371-377 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. B (1)

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).
[CrossRef]

Phys. Rev. E (3)

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of epsilon-negative and mu-negative materials,” Phys. Rev. E 74, 056615 (2006).
[CrossRef]

N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystal with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dependence of the resonance modes in the zero- φ eff gap on d D in structure ( A B ) 8 ( C D ) 8 ( A B ) 8 A at normal incidence with d A = 12 mm , d B = 6 mm , and d C = 14 mm .

Fig. 2
Fig. 2

Dependences of the resonance modes on incident angle for the structure ( A B ) 8 ( C D ) 8 ( A B ) 8 A with d D = 20 mm . The other parameters are the same as those in Fig. 1.

Fig. 3
Fig. 3

The electric field distribution corresponding to the four resonance modes in Fig. 2. The light gray and white areas correspond to the layers of MNG and ENG materials, respectively.

Fig. 4
Fig. 4

Calculated ϵ eff and μ eff for (a) ( A B ) m with d A = 12 mm and d B = 6 mm and (c) ( C D ) n with d C = 14 mm and d D = 20 mm , and the transmittance for (b) ( A B ) 8 and (d) ( C D ) 8 .

Fig. 5
Fig. 5

Dependence of the resonance modes on d 2 for three-layer structure MNG/ENG/MNG with d 1 = 30 mm .

Fig. 6
Fig. 6

Dependence of the resonance modes on the period number n in the structure ( A B ) 8 ( C D ) n ( A B ) 8 A with d A = 12 mm , d B = 6 mm , and d C = d D = 14 mm . (a) n = 4 , (b) n = 8 , (c) n = 12 .

Fig. 7
Fig. 7

Dependence of the resonance modes on d D in the structure ( A B ) 8 ( C D ) 12 ( A B ) 8 A at normal incidence with d A = 12 mm , d B = 6 mm , and d C = 14 mm .

Fig. 8
Fig. 8

Transmission spectra of the structure ( A B ) 8 ( C D ) 8 ( A B ) 8 A with the thicknesses of layer C and D increasing: (a) d C = d D = 8 mm , (b) d C = d D = 12 mm , (c) d C = d D = 16 mm , and (d) d C = d D = 20 mm .

Fig. 9
Fig. 9

Comparison of the transmittance of the resonance modes of different heterostructures: (a) ( A B ) 8 ( C D ) 4 ( A B ) 8 A , (b) ( A B ) 8 ( C D ) 4 ( A B ) 8 , and (c) ( A B ) 8 ( C D ) 4 ( B A ) 8 .

Fig. 10
Fig. 10

Transmission spectra of [ ( A B ) 8 ( C D ) 8 ] N with d A = 12 mm , d B = 6 mm 6 mm , and d C = d D = 14 mm for (a) N = 2 , (b) N = 3 , and (c) N = 4 , respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϵ 1 = ϵ a , μ 1 = μ a ω mp 2 ω 2
ϵ 2 = ϵ b ω ep 2 ω 2 , μ 2 = μ b
E l ( x , z ) = ( a l e i k l z d l + b l e i k l z d l ) e i k x x ,
M l = ( cos k l z d l i sin k l z d l η l i η l sin k l z d l cos k l z d l ) ,
μ ¯ = ( 2 m + 1 ) μ 1 d A + 2 m μ 2 d B + n ( μ 1 d C + μ 2 d D ) ( 2 m + 1 ) d A + 2 m d B + n ( d C + d D ) = 0 ,
ϵ ¯ = ( 2 m + 1 ) ϵ 1 d A + 2 m ϵ 2 d B + n ( ϵ 1 d C + ϵ 2 d D ) ( 2 m + 1 ) d A + 2 m d B + n ( d C + d D ) = 0 .
ϵ eff = d 1 d ϵ 1 + d 2 d ϵ 2 ,
μ eff = d 1 d μ 1 + d 2 d μ 2 .

Metrics