Abstract

We report on the extremely large nonresonant quadratic optical nonlinearity of the stilbazolium salt trans-4-(dimethylamino)-N-phenyl-4-stilbazolium hexafluorophosphate (DAPSH). The phenyl-pyridinium chromophores in DAPSH crystals grown from acetone solution pack with a highly aligned polar order, resulting in a very large birefringence, Δn=1.17±0.06 at λ=0.83μm and Δn=0.83±0.04 at λ=1.55μm. More importantly, this leads to an extremely large diagonal quadratic susceptibility with the nonlinear optical coefficient for second-harmonic generation reaching up to d111=290±40pmV at 1.907μm fundamental wavelength, which presents a considerable improvement with respect to the presently best material trans-4-(dimethylamino)-N-methyl-4-stilbazolium tosyate (DAST) with d111=210±55pmV at λ=1.907μm. The result is in agreement with the preferential packing of the chromophores and the previous studies demonstrating higher microscopic nonlinearity of the chromophores in DAPSH compared to that of DAST.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
    [CrossRef]
  2. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
    [CrossRef]
  3. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
    [CrossRef] [PubMed]
  4. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
    [CrossRef]
  5. O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
    [CrossRef]
  6. H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.
  7. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).
  8. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.
  9. M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  10. S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
    [CrossRef] [PubMed]
  11. S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
    [CrossRef]
  12. U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
    [CrossRef]
  13. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
    [CrossRef]
  14. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
    [CrossRef]
  15. T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
    [CrossRef]
  16. T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
    [CrossRef]
  17. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
    [CrossRef]
  18. L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007).
    [CrossRef] [PubMed]
  19. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
    [CrossRef] [PubMed]
  20. Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
    [CrossRef]
  21. Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
    [CrossRef]
  22. B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
    [CrossRef]
  23. Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
    [CrossRef]
  24. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
    [CrossRef]
  25. L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007).
    [CrossRef]
  26. B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
    [CrossRef]
  27. B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
    [CrossRef]
  28. B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
    [CrossRef]
  29. B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
    [CrossRef]
  30. B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
    [CrossRef]
  31. B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).
  32. M. S. Shumate, “Interferometric measurements of large indices of refraction,” Appl. Opt. 5, 327-331 (1966).
    [CrossRef] [PubMed]
  33. J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974).
    [CrossRef]
  34. J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982).
    [CrossRef]
  35. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970).
    [CrossRef]
  36. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
    [CrossRef]
  37. I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
    [CrossRef]
  38. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416-427 (1995).
    [CrossRef]
  39. B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989).
    [CrossRef]
  40. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502-510 (1972).
    [CrossRef]

2007

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007).
[CrossRef] [PubMed]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007).
[CrossRef]

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

2006

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

2005

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

2004

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

2003

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

2002

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

2000

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

1998

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

1997

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

1996

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

1995

1994

S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

1989

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
[CrossRef] [PubMed]

B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989).
[CrossRef]

1982

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982).
[CrossRef]

1974

J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974).
[CrossRef]

1972

1970

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

1966

1964

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

Aravazhi, S.

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

Asselberghs, I.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Beljonne, D.

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Bergman, J. G.

J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974).
[CrossRef]

Berreman, D. W.

Bosch, M.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Bösch, M.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

Bosshard, C.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Brehat, F.

B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989).
[CrossRef]

Brunner, F. D. J.

Brunschwig, B. S.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Cai, B.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Cai, C.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Calawa, D. R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Choubey, A.

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Clays, K.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Coe, B.

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Coe, B. J.

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Coles, S. J.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Crane, G. R.

J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Deneault, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Döbeli, M.

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Essex-Lopresti, J. P.

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Flörsheimer, M.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Follonier, S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Garin, J.

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Geis, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Gelbrich, T.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Gianotti, R.

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Glavcheva, Z.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gramlich, V.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Guarino, A.

Gunter, P.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Günter, P.

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007).
[CrossRef]

L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007).
[CrossRef] [PubMed]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Harrington, L. J.

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

Harris, J. A.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Hayden, L. M.

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Herman, W. N.

Houbrechts, S.

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Hulliger, J.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Hupp, J. T.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Hursthouse, M. B.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Ikeda, S.

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Jager, M.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Jäger, M.

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

Jazbinsek, M.

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007).
[CrossRef] [PubMed]

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Jazbinšek, M.

Jeffery, J. C.

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

Jen, A. K.-Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

Johnson, R. C.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Kaatz, P.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Kaino, T.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Khan, R. U. A.

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Knöpfle, G.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Koechlin, M.

Krohn, K. E.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

Kwon, O.-P.

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Liakatas, I.

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

Light, M. E.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Lyszczarz, T. M.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Marchant, M. F.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Marder, S. R.

S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
[CrossRef] [PubMed]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Meier, U.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

Mineno, Y.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Miyata, S.

H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.

Mowers, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Mutter, L.

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007).
[CrossRef] [PubMed]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Nakanishi, H.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Nakatani, K.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Nalwa, H. S.

H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.

Neis, M.

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Odani, T.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Okada, S.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Olbrechts, G.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

Orduna, J.

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Oudar, J. L.

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982).
[CrossRef]

Pan, F.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Perry, J. W.

S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
[CrossRef] [PubMed]

Persoons, A.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Prêtre, P.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Rees, L. H.

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Ruiz, B.

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Schaefer, W. P.

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
[CrossRef] [PubMed]

Schneider, A.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Seiler, P.

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Shumate, M. S.

Sinta, R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Spector, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Spreiter, R.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Stillhart, M.

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006).
[CrossRef]

Sutter, K.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

Takayama, K.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Taniuchi, T.

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Umezawa, H.

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Vogel, H.

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Watanabe, T.

H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.

Wong, M. S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Wostyn, K.

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Wyncke, B.

B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989).
[CrossRef]

Yakymyshyn, C. P.

S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

Yang, Z.

L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007).
[CrossRef]

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

Zgonik, M.

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Zyss, J.

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982).
[CrossRef]

Adv. Funct. Mater.

T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005).
[CrossRef]

Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002).
[CrossRef]

B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964).
[CrossRef]

I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000).
[CrossRef]

Chem. Commun.

B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997).
[CrossRef]

Chem. Mater.

Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007).
[CrossRef]

S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Cryst. Eng. Comm.

B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).

IEEE J. Sel. Top. Quantum Electron.

M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Inorg. Chem.

B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998).
[CrossRef]

J. Appl. Phys.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970).
[CrossRef]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998).
[CrossRef]

J. Chem. Phys.

J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974).
[CrossRef]

J. Mater. Chem.

B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. B

B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989).
[CrossRef]

J. Phys. Chem. A

B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 2

T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005).
[CrossRef]

Nat. Photonics

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982).
[CrossRef]

Science

S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989).
[CrossRef] [PubMed]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000).
[CrossRef]

Other

H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Molecular diagram of DAPSH with the NLO active cation (phenyl-stilbazolium) and the negatively charged anion ( P F 6 ) . (b) View of the crystal packing along the crystallographic b axis showing the high alignment of the chromophores in the a c plane; ψ is the angle between the polar axis (dielectric x 1 axis) and the normal to the b c plane (dashed curve). (c) View along the dielectric axis x 3 . An angle θ p = 15.5 ° between the long axis of the molecules and the polar axis is indicated.

Fig. 2
Fig. 2

(a) Dark field microscope image of the crystal used for our measurements; the largest surface shown is (1,0,0). (b) Schematic of the orientation of the crystal shown in Fig. 2a.

Fig. 3
Fig. 3

Measured refractive index n 1 (open triangles), n 2 (open circles), and n 3 (open squares) of DAPSH as a function of the wavelength λ. The solid curves are Sellmeier-oscillator fits using Eq. (1). The refractive indices, which were used for the analysis of the Maker fringe data, are depicted as open diamonds (see text).

Fig. 4
Fig. 4

Absorption coefficient for eigenpolarizations α 2 and α 13 as a function of the wavelength λ.

Fig. 5
Fig. 5

Phase-matched SHG signal obtained by rotating the DAPSH crystal around the dielectric x 2 axis with an s-polarized impinged fundamental beam at 1.907 μ m and p-polarized generated second-harmonic light (filled circles). The configuration is schematically illustrated in the inset (top view). The solid theoretical curve has a smaller peak width than the measured signal because of focusing and/or scattering of the fundamental beam.

Fig. 6
Fig. 6

(a) Maker fringe curve at λ = 1.907 μ m fundamental wavelength obtained by rotating the DAPSH crystal around the dielectric x 2 axis (open circles) for both fundamental and SHG beam p-polarized; a detail is shown in the inset. The upper envelope of the theoretical curve (solid curve following the fringes) is in good consistency with the upper envelope of the measured curve. As explained in the text, the actual SHG signal strength is probably given by the sum of the lower and the upper envelopes of the experimental Maker fringe curve. The upper envelope of the corresponding theoretical Maker fringe curve is shown as a dashed–dotted curve. (b) Number of minima of the Maker fringes N observed in the experiment (open diamonds, only every fifth point is shown for clarity) and the corresponding theoretical curve (solid curve). For the number of minima N we chose numbering starting with 0 from the right and included an offset constant in the corresponding theoretical model. The dotted curve is the absolute value of the derivative of the number of minima, d N d ϕ , and is a measure of the density of the Maker fringes.

Fig. 7
Fig. 7

Number of interference fringes as a function of the external rotation angle (0° indicates normal incidence) for two experimental configurations as illustrated above the corresponding parabolas. For reasons of clarity only every fifth data point is shown. For the theoretical curve (solid curve) the refractive indices n 1 and n 3 were varied, whereas the inclination angle φ was fixed at 55.8°. The shift to positive angles of the parabola measured with p-polarized light is due to a nonzero inclination angle φ between the b c surface and the dielectric system.

Tables (1)

Tables Icon

Table 1 Sellmeier Parameters a for the Description of the Dispersion of the Refractive Indices [Eq. (1)]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = n 0 2 + q λ 0 2 λ 2 λ 0 2 = n 0 2 + q E 2 E 0 2 E 2 ,
d i j k = 1 2 N 1 n ( g ) f i 2 ω f j ω f k ω s n ( g ) i j k 3 cos θ i l s cos θ j m s cos θ k n s β l m n ,
d i j k 1 2 N f i 2 ω f j ω f k ω ( β cos 3 θ p β cos θ p sin 2 θ p β 0 β 0 0 0 0 β 0 β cos θ p sin 2 θ p β β β 0 β 0 ) ,
P 1 2 ω = ε 0 ( d 111 E 1 2 + d 122 E 2 2 + d 133 E 3 2 + 2 d 113 E 1 E 3 ) ,
P 2 2 ω = ε 0 ( 2 d 223 E 2 E 3 + 2 d 212 E 1 E 2 ) ,
P 3 2 ω = ε 0 ( d 311 E 1 2 + d 322 E 2 2 + d 333 E 3 2 + 2 d 313 E 1 E 3 ) ,
d = 1 2 χ ( 2 ) ( 2 ω , ω , ω ) ,
P 2 ω = 2 ε 0 d eff E ω E ω ,
d eff = i j k d i j k ( 2 ω , ω , ω ) cos ( α i 2 ω ) cos ( α j ω ) cos ( α k ω ) ,
Δ k ( ϕ ) d 2 = N ( ϕ ) π ,
Δ k ( ϕ ) = 2 ω c n ω ( ϕ ω ) cos ϕ ω n 2 ω ( ϕ 2 ω ) cos ϕ 2 ω ,

Metrics