Abstract

Terahertz (THz) plasmonlike excitation on top of a thin ferroelectric polyvinylidene fluoride layer covering a solid-core polymeric Bragg fiber and facing liquid analyte is demonstrated theoretically. In a view of designing a fiber-based sensor of the analyte refractive index, phase matching of a THz plasmonlike mode with the fundamental core guided mode of a fiber is then demonstrated for the most challenging case of low refractive index analytes. A novel sensing methodology based on the core mode anomalous dispersion is proposed. Similarly to the surface plasmon resonance sensors in the visible, we show the possibility of designing high-sensitivity sensors in the THz regime with a resolution of 2×104 in refractive index change.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995).
    [CrossRef]
  3. A. Hassani and M. Skorobogatiy, “Design criteria for the microstructured optical fiber-based surface plasmon resonance sensors,” J. Opt. Soc. Am. B 24, 1423-1429 (2007).
    [CrossRef]
  4. M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
    [CrossRef]
  5. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  6. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
    [CrossRef]
  7. M. Qiu, “Photonic band structures for surface waves on structured metal surfaces,” Opt. Express 13, 7583-7588 (2005).
    [CrossRef] [PubMed]
  8. J. F. O'Hara, R. D. Averitt, and A. J. Taylor, “Prism coupling to terahertz surface plasmon polaritons,” Opt. Express 13, 6117-6126 (2005).
    [CrossRef] [PubMed]
  9. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
    [CrossRef] [PubMed]
  10. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021-13029 (2006).
    [CrossRef] [PubMed]
  11. J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
    [CrossRef]
  12. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253-1259 (2006).
    [CrossRef] [PubMed]
  13. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
    [CrossRef] [PubMed]
  14. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15, 14804-14809 (2007).
    [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
    [CrossRef]
  17. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469-2473 (2005).
    [CrossRef]
  18. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).
  19. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

2007 (3)

2006 (7)

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021-13029 (2006).
[CrossRef] [PubMed]

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (1)

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

2002 (1)

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

1982 (1)

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Agranovich, V. M.

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Averitt, R. D.

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

Chai, L.

Chen, Y.

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Fehri, M. F.

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Gauvreau, B.

Hassani, A.

Hidaka, T.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Hu, M.

Ichikawa, S.

Ito, H.

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Jeoung, S. C.

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Kabashin, A.

Kabashin, A. V.

M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Kim, D. S.

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

Kurz, H.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

Lee, J. W.

Li, Y.

Lienau, Ch.

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Mills, D. L.

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

Minamide, H.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

Miyamaru, F.

Nishizawa, J.

O'Hara, J. F.

Otani, C.

Padilla, W. J.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Park, D. J.

Park, Q. H.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Planken, P. C. M.

Qiu, M.

Rivas, J. G.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Sanchez-Gil, J. A.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Seo, M. A.

Skorobogatiy, M.

A. Hassani and M. Skorobogatiy, “Design criteria for the microstructured optical fiber-based surface plasmon resonance sensors,” J. Opt. Soc. Am. B 24, 1423-1429 (2007).
[CrossRef]

M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Skorobogatiy, M. A.

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Song, Z.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Suzuki, T.

Takeda, M. W.

Tamura, K.

Taylor, A. J.

Wang, C. Y.

Wang, K.

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Xing, Q.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (3)

M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513-517 (2006).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Opt. Express (6)

Phys. Rev. Lett. (3)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Other (2)

V. M. Agranovich and D. L. Mills, Surface Polaritons--Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Real and imaginary part of the refractive index of ferroelectric PVDF.

Fig. 2
Fig. 2

Schematic of a solid-core THz Bragg fiber with PVDF layer facing analyte.

Fig. 3
Fig. 3

Dispersion relations of the core-guided mode [solid and dashed black curves (blue online)] and the surface plasmon mode [solid and dashed curves running top to bottom (red online)] in the vicinity of the phase-matching point C. Solid curves are calculated for the analyte refractive index n a = 1.33 , while dashed curves are calculated for n a = 1.335 . Transmission loss of a core-guided mode (dashed-dotted curve) exhibits a strong increase at the phase-matching point C due to efficient mixing with a plasmon wave.

Fig. 4
Fig. 4

S z field distributions in the fiber modes at various points indicated in Fig. 3. (a) Fundamental core mode far from the phase matching point. (b) Plasmonic mode far and to the left of the phase matching point. (c) Fundamental core mode at the phase matching point. (d) Plasmonic mode far and to the right of the phase matching point. This mode is located very close to the edge of a reflector bandgap resulting in a strong penetration of a plasmon mode fields into the fiber core.

Fig. 5
Fig. 5

Dispersion of the fundamental core mode near the phase matching point with a plasmon mode for the two values of the analyte refractive index n a = 1.33 and n a = 1.335 .

Fig. 6
Fig. 6

Sensitivity of a solid-core Bragg fiber-based sensor incorporating a thin ferroelectric PVDF layer (thicker solid curve). Loss of a fundamental core mode of a fiber in the vicinity of a phase matching point with a plasmonic mode for the two values of analyte refractive index n a = 1.33 (dashed curve) and n a = 1.335 (solid thin curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε PVDF ( ω ) = ε opt + ( ε d c ε opt ) ω T O 2 ω T O 2 ω 2 + i γ ω ,
α [ dB cm ] = Im ( n eff ) 40 π ( λ [ cm ] log 10 ) = 1819 [ dB cm ] Im ( n eff ) ν [ THz ] .
S A ( λ ) [ RIU 1 ] = 1 P ( L , λ , n a ) P ( L , λ , n a + d n a ) P ( L , λ , n a ) d n a .
S A ( λ ) [ RIU 1 ] = 1 P ( L , λ , n a ) P ( L , λ , n a ) n a = 1 α ( λ , n a ) α ( λ , n a ) n a .

Metrics