Abstract

The design of a femtosecond stimulated Raman spectroscopy (FSRS) setup capable of recording high contrast Raman spectra is presented. The Raman transition is stimulated by a supercontinuum pulse and pumped by the second-harmonic of a Ti:sapphire amplifier system fundamental wavelength. This scheme alleviates rapid amplitude modulation near 800nm using the smooth amplitude region in the continuum near the 400nm pump. Raman spectra of acetone and methanol are presented in which the Raman peak intensity is the most pronounced feature of the spectrum. A mechanism limiting the resolution and peak intensity based on the nonlinear index of refraction effects is suggested.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 pm diode laser,” Appl. Opt. 31, 809-814 (1992).
    [CrossRef] [PubMed]
  2. T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
    [CrossRef]
  3. D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).
  4. A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988).
    [CrossRef]
  5. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
    [CrossRef] [PubMed]
  6. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
    [CrossRef]
  7. G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
    [CrossRef]
  8. A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
    [CrossRef] [PubMed]
  9. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
    [CrossRef]
  10. T. Chen, J. M. J. Madey, F. M. Price, S. K. Sharma, and B. Lienert, “Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse,” Appl. Spectrosc. 61, 624-629 (2007).
    [CrossRef] [PubMed]
  11. S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
    [CrossRef]
  12. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
    [CrossRef]
  13. B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004).
    [CrossRef] [PubMed]
  14. T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
    [CrossRef]
  15. M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
    [CrossRef]
  16. M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
    [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  18. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003).
    [CrossRef] [PubMed]
  19. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
    [CrossRef]
  20. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
    [CrossRef]
  21. S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
    [CrossRef]
  22. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
    [CrossRef]
  23. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
    [CrossRef]
  24. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
    [CrossRef]
  25. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
    [CrossRef]
  26. J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncoelinear optical parametric amplifier,” Opt. Lett. 31, 1289-1291 (2006).
    [CrossRef] [PubMed]
  27. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996).
    [CrossRef] [PubMed]
  28. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
    [CrossRef]

2007

2006

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncoelinear optical parametric amplifier,” Opt. Lett. 31, 1289-1291 (2006).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
[CrossRef] [PubMed]

2005

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
[CrossRef] [PubMed]

S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
[CrossRef]

2004

B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

2003

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003).
[CrossRef] [PubMed]

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
[CrossRef]

2001

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

1999

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

1996

1992

1988

A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988).
[CrossRef]

1983

D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).

1963

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

1962

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Ackermann, R.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Angel, S. M.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

Brumer, P.

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

Bucksbaum, P. H.

B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004).
[CrossRef] [PubMed]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Byer, R. L.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
[CrossRef]

Carter, J. C.

Chen, T.

Chio, C. H.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

Ciddor, P. E.

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

Eckhardt, G.

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Eichberger, R.

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

Ernstorfer, R.

Garbuny, M.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
[CrossRef]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Gundlach, L.

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Henningsen, T.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
[CrossRef]

Jin, S. M.

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

Kasparian, J.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Killinger, D.

D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).

Kim, S. K.

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

King, T. A.

A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988).
[CrossRef]

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003).
[CrossRef] [PubMed]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Lawrence-Snyder, M.

Lee, Y. J.

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

Lienert, B.

T. Chen, J. M. J. Madey, F. M. Price, S. K. Sharma, and B. Lienert, “Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse,” Appl. Spectrosc. 61, 624-629 (2007).
[CrossRef] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

Lucey, P. G.

A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
[CrossRef] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

Madey, J. M. J.

Mathies, R. A.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003).
[CrossRef] [PubMed]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003).
[CrossRef] [PubMed]

McClung, F. J.

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Mejean, G.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Misra, A. K.

A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
[CrossRef] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
[CrossRef]

Mohebati, A.

A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988).
[CrossRef]

Mooradian, A.

D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).

Pearson, B. J.

B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004).
[CrossRef] [PubMed]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

Piel, J.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

Price, F. M.

Reynolds, J. G.

Riedle, E.

Rohwetter, P.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Ruthmann, J.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

Salmon, E.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Scaffidi, J.

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Schwarz, S. E.

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Sharma, B.

S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
[CrossRef]

Sharma, S. K.

T. Chen, J. M. J. Madey, F. M. Price, S. K. Sharma, and B. Lienert, “Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse,” Appl. Spectrosc. 61, 624-629 (2007).
[CrossRef] [PubMed]

A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
[CrossRef] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
[CrossRef]

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

Spanner, M.

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Tai, H.

Uehara, K.

Weinacht, T. C.

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Weiner, D.

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Whipple, R. E.

White, J. L.

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Wolf, J.-P.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Woodbury, E. J.

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Woste, L.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Yu, J.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

Yu, J. W.

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Anal. Chem.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007).
[CrossRef]

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Appl. Phys. Lett.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004).
[CrossRef]

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003).
[CrossRef]

Appl. Spectrosc.

Bull. Korean Chem. Soc.

S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004).
[CrossRef]

J. Mod. Opt.

A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988).
[CrossRef]

J. Phys. Chem. A

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

Phys. Rev. A

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001).
[CrossRef]

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999).
[CrossRef]

Phys. Rev. Lett.

B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004).
[CrossRef] [PubMed]

G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

Rev. Sci. Instrum.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Spectrochim. Acta, Part A

S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005).
[CrossRef]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005).
[CrossRef]

Other

D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy diagrams describing Raman scattering. The first column depicts Stokes scattering, where the emitted photon has lower energy than the incident one. The second column depicts anti-Stokes scattering, where the emitted photon energy has higher energy than the incident one. The rows present the spontaneous and the stimulated processes, where in the case of stimulated emission, an incident field of frequency ω S or ω A triggers the transition from the virtual level to the final state of the molecule by converting ω p to ω S , or ω A , respectively.

Fig. 2
Fig. 2

Experimental setup. The top view shows the beam path, where a small fraction of light is sent by a beam splitter (BS) through the SC arm, and the remainder is used to generate the SH, used as the Raman pump. The noncollinear geometry of the SC and the pump beams can be seen in the side view of the figure.

Fig. 3
Fig. 3

Raman spectra measured for liquid acetone using a 10 mm long sample path length. The darker curve line corresponds to the spectrum recorded for SH pump and SC probe pulses temporally separated by 2 ps , and the lighter curve shows the spectrum when both pulses coincide in the acetone samples. The optimal pump beam intensity at the sample was approximately 2 * 10 11 W cm 2 .

Fig. 4
Fig. 4

Raman spectra measured for liquid methanol using a 10 mm long sample path length. The darker curve corresponds to the spectrum recorded for SH pump and SC pulses temporally separated by 2 ps , and the lighter curve shows the spectrum when both pulses coincide in the methanol sample. The optimal pump beam intensity at the sample was approximately 2.3 * 10 11 W cm 2 .

Fig. 5
Fig. 5

Methanol Raman spectra measured for the 1 mm long sample path length. The darker curve corresponds to the spectrum recorded for SH pump and SC probe pulses temporally separated by 2 ps , and the lighter curve shows the spectrum when both pulses coincide in time. The vertical lines mark the positions of the anticipated Raman lines. The optimal beam intensity at the sample was approximately 4.9 * 10 11 W cm 2 .

Fig. 6
Fig. 6

Acetone Raman spectra measured for the 1 mm long sample path length. The darker curve corresponds to the spectrum recorded for SH pump and SC probe pulses temporally separated by 2 ps , and the lighter curve shows the spectrum when both pulses coincide in time. The vertical line marks the position of the anticipated Raman line. The optimal beam intensity at the sample was approximately 4.5 * 10 11 W cm 2 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d m s d z = 1 c n D m p ( m s + 1 ) ,
m s ( z ) = m s ( 0 ) + 1 c n D m p z ,
m s ( z ) = m s ( 0 ) exp [ D m p c n z ] .
n ( t ) = n 0 + n 2 I ( t ) ,
Φ ( t ) = ω 0 t + k z n ( t ) ,
ω i ( t ) = Φ ( t ) t .
Δ ω I 0 n 2 z τ p 2 ,

Metrics