Abstract

Propagation of surface plasmons on gold in the range 2.83.5eV over 0.11.6μm distances was characterized by cathodoluminescence spectroscopy. Surface plasmons were excited by an electron beam near a grating milled in the gold. The spectra of outcoupled radiation reveal increasingly strong propagation losses as surface plasmon energy increases above 2.8eV, but little effect in the range 1.62.8eV. These results are in partial agreement with theoretical expectations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. R. A. Soref, “Introduction--The Opto-Electronic Integrated Circuit,” in Silicon Photonics--The State of the Art, G.Reed, ed. (Wiley, 2008), pp. 1-14.
  4. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
    [CrossRef] [PubMed]
  5. J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
    [CrossRef]
  6. M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
    [CrossRef] [PubMed]
  7. J. Aue and J. Th. M. De Hossona, “Influence of atomic force microscope tip--sample interaction on the study of scaling behavior,” Appl. Phys. Lett. 71, 1347-1349 (1997).
    [CrossRef]
  8. E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
    [CrossRef]
  9. H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1977), Vol. 9, pp. 145-261.
  10. A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  12. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  13. M. L. Theye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970).
    [CrossRef]
  14. B. Dold and R. Mecke, “Optical properties of noble metals, transition metals, and their alloys in the infrared pt. 2,” Optik (Jena) 22, 453-463 (1965).
  15. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
    [CrossRef]
  16. J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
    [CrossRef]
  17. Z.-J. Ding and R. Shimizu, “Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum,” Phys. Rev. B 61, 14128-14135 (2000).
    [CrossRef]
  18. E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
    [CrossRef]
  19. R. H. Ritchie and H. B. Eldridge, “Optical emission from irradiated foils. I,” Phys. Rev. 126, 1935-1947 (1962).
    [CrossRef]
  20. N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
    [CrossRef]
  21. D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. C 10, 397-405 (1977).
    [CrossRef]

2008 (1)

R. A. Soref, “Introduction--The Opto-Electronic Integrated Circuit,” in Silicon Photonics--The State of the Art, G.Reed, ed. (Wiley, 2008), pp. 1-14.

2007 (4)

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
[CrossRef]

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2006 (2)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

2001 (1)

N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

2000 (1)

Z.-J. Ding and R. Shimizu, “Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum,” Phys. Rev. B 61, 14128-14135 (2000).
[CrossRef]

1997 (2)

J. Aue and J. Th. M. De Hossona, “Influence of atomic force microscope tip--sample interaction on the study of scaling behavior,” Appl. Phys. Lett. 71, 1347-1349 (1997).
[CrossRef]

E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
[CrossRef]

1990 (1)

J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
[CrossRef]

1985 (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

1977 (2)

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1977), Vol. 9, pp. 145-261.

D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. C 10, 397-405 (1977).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1970 (1)

M. L. Theye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

1965 (1)

B. Dold and R. Mecke, “Optical properties of noble metals, transition metals, and their alloys in the infrared pt. 2,” Optik (Jena) 22, 453-463 (1965).

1962 (1)

R. H. Ritchie and H. B. Eldridge, “Optical emission from irradiated foils. I,” Phys. Rev. 126, 1935-1947 (1962).
[CrossRef]

1960 (1)

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
[CrossRef]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Araya, K.

N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Atwater, H. A.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Aue, J.

J. Aue and J. Th. M. De Hossona, “Influence of atomic force microscope tip--sample interaction on the study of scaling behavior,” Appl. Phys. Lett. 71, 1347-1349 (1997).
[CrossRef]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

Chen, Y.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

De Hossona, J. Th. M.

J. Aue and J. Th. M. De Hossona, “Influence of atomic force microscope tip--sample interaction on the study of scaling behavior,” Appl. Phys. Lett. 71, 1347-1349 (1997).
[CrossRef]

Ding, Z.-J.

Z.-J. Ding and R. Shimizu, “Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum,” Phys. Rev. B 61, 14128-14135 (2000).
[CrossRef]

Dold, B.

B. Dold and R. Mecke, “Optical properties of noble metals, transition metals, and their alloys in the infrared pt. 2,” Optik (Jena) 22, 453-463 (1965).

Eldridge, H. B.

R. H. Ritchie and H. B. Eldridge, “Optical emission from irradiated foils. I,” Phys. Rev. 126, 1935-1947 (1962).
[CrossRef]

Ferrell, R. A.

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
[CrossRef]

Garcia de Abajo, F. J.

N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Goh, M. C.

E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
[CrossRef]

Heitmann, D.

D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. C 10, 397-405 (1977).
[CrossRef]

Ingram, J. C.

J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Kik, P. G.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
[CrossRef]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Leung, E. C. W.

E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
[CrossRef]

Lezec, H. J.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

MacDonald, K. F.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Markiewicz, P.

E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
[CrossRef]

Mecke, R.

B. Dold and R. Mecke, “Optical properties of noble metals, transition metals, and their alloys in the infrared pt. 2,” Optik (Jena) 22, 453-463 (1965).

Nebesny, K. W.

J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
[CrossRef]

Palik, E. D.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Pemberton, J. E.

J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
[CrossRef]

Polman, A.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Raether, H.

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1977), Vol. 9, pp. 145-261.

Ritchie, R. H.

R. H. Ritchie and H. B. Eldridge, “Optical emission from irradiated foils. I,” Phys. Rev. 126, 1935-1947 (1962).
[CrossRef]

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Ross, C. E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Shimizu, R.

Z.-J. Ding and R. Shimizu, “Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum,” Phys. Rev. B 61, 14128-14135 (2000).
[CrossRef]

Soref, R. A.

R. A. Soref, “Introduction--The Opto-Electronic Integrated Circuit,” in Silicon Photonics--The State of the Art, G.Reed, ed. (Wiley, 2008), pp. 1-14.

Stern, E. A.

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
[CrossRef]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Theye, M. L.

M. L. Theye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

van Wijngaarden, J. T.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Verhagen, E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Yamamoto, N.

N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Zheludev, N. I.

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
[CrossRef]

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Aue and J. Th. M. De Hossona, “Influence of atomic force microscope tip--sample interaction on the study of scaling behavior,” Appl. Phys. Lett. 71, 1347-1349 (1997).
[CrossRef]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Appl. Surf. Sci. 44, 293-300 (1990).
[CrossRef]

J. Phys. C (1)

D. Heitmann, “Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces,” J. Phys. C 10, 397-405 (1977).
[CrossRef]

J. Vac. Sci. Technol. B (1)

E. C. W. Leung, P. Markiewicz, and M. C. Goh, “Identification and visualization of questionable regions in atomic force microscope images,” J. Vac. Sci. Technol. B 15, 181-185 (1997).
[CrossRef]

Nano Lett. (1)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Optik (Jena) (1)

B. Dold and R. Mecke, “Optical properties of noble metals, transition metals, and their alloys in the infrared pt. 2,” Optik (Jena) 22, 453-463 (1965).

Phys. Rev. (3)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[CrossRef]

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
[CrossRef]

R. H. Ritchie and H. B. Eldridge, “Optical emission from irradiated foils. I,” Phys. Rev. 126, 1935-1947 (1962).
[CrossRef]

Phys. Rev. B (4)

N. Yamamoto, K. Araya, and F. J. Garcia de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Z.-J. Ding and R. Shimizu, “Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum,” Phys. Rev. B 61, 14128-14135 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

M. L. Theye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970).
[CrossRef]

Other (6)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1977), Vol. 9, pp. 145-261.

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, “Active plasmonics,” in Nanophotonics with Surface Plasmons, V.M.Shalaev and S.Kawata, eds. (Elsevier, 2007), pp. 109-139.
[CrossRef]

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

R. A. Soref, “Introduction--The Opto-Electronic Integrated Circuit,” in Silicon Photonics--The State of the Art, G.Reed, ed. (Wiley, 2008), pp. 1-14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Atomic force microscopy line scan of grating on gold film. The inset is a focused ion beam micrograph of the grating. The black star schematically represents the 5 nm diameter electron beam spot (exaggerated for clarity) at a distance x (also exaggerated) from the rulings. CL spectra were collected as a function of x. The bar symbols on the zero line indicate the x values probed. The shaded box represents the penetration depth of the surface plasmon fields into the metal.

Fig. 2
Fig. 2

Comparison of the dispersion relation for SPPs on gold with the light of slope c. The tick labels on the right of the graph indicate the wavelengths of free space radiation that the SPPs would be outcoupled to by the grating.

Fig. 3
Fig. 3

Characteristic lengths as a function of SPP energy. The propagation length for SPPs on gold is given by the heavy curve. The light curve shows the extent to which SPPs penetrate into the air above the surface. The triangle signals indicate the various distances from the grating that SPPs were excited by the electron beam. The tick labeling on the upper border indicates the photon wavelengths for outcoupled SPPs.

Fig. 4
Fig. 4

SPP outcoupling angles for wavelengths in the range of the CL experiment for a grating outcoupler with 360 nm period. The curves for different m values are for corresponding amounts of momenta given up by the SPP to the grating. Negative angles correspond to outcoupled photons with in-plane momentum opposite to that of the SPP. The unshaded part of the figure indicates the range of angles that are collected by the CL apparatus.

Fig. 5
Fig. 5

Electron energy loss spectrum for generation of SPPs on gold. The symbols represent experimentally observed [16] and simulated [17] energy loss peaks. The curve is the energy loss function calculated from the permittivity. The range of photon energies collected by the CL experiment is indicated by the horizontal bar.

Fig. 6
Fig. 6

Measured (top) and calculated (bottom) ratios of CL spectra. Data for two different distances of electron-beam excitation spot from the grating outcoupler are plotted.

Fig. 7
Fig. 7

Ratios of CL spectra at three wavelengths (symbols) as a function of the distance of the electron-beam excitation spot from the grating outcoupler. The heavy curve is calculated ratio for λ = 350 nm . Calculated curves for other wavelengths are similar.

Fig. 8
Fig. 8

Ratios of CL spectra for gratings with different ratio of period a ( = 360 nm ) to groove width t.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Re [ k ] = ( 2 π λ ) sin θ + 2 π m a ,
I ( x , λ ) = S ( λ ) { B ( λ ) f ( x ) + D ( λ ) G ( λ ) A ( λ ) exp [ x L ( λ ) ] } ,
Δ ( x , λ ) [ I ( x , λ ) I ( x L , λ ) ] S ( λ ) = B ( λ ) [ f ( x ) 1 ] + D ( λ ) exp [ x L ( λ ) ] .
R ( x , λ ) I ( x , λ ) I ( x L , λ ) = f ( x ) + [ D ( λ ) B ( λ ) ] e x L ( λ ) .

Metrics