Abstract

The dispersion properties of single-mode single-polarization elliptical-hole core circular-hole holey fibers (EC-CHFs) are investigated. In these fibers, the single-polarization regime can be easily achieved by the anisotropic fundamental-space filling modes (FSMs) in the core region and isotropic FSMs in the cladding region. We show that there is a remarkable difference between the mode fields of EC-CHFs having two mutually orthogonal directions of elliptical holes, although their dispersion properties are very close to each other. We also demonstrate that, for small air holes, the single-polarization EC-CHFs with zero dispersion at 1.55μm are easily designed by the FSMs, whereas, in the case of a large lattice pitch, tuning zero-dispersion wavelength is needed for designed EC-CHFs by using the FSMs. Moreover, our rough bending-loss estimations based on the weakly guiding fiber approximation show that low bending losses can be achieved in the EC-CHFs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021-1039 (1974).
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484-485 (1997).
    [CrossRef] [PubMed]
  4. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
    [CrossRef]
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  9. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233-1235 (2001).
    [CrossRef]
  10. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  11. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  12. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
    [CrossRef]
  13. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  14. M. J. Steel and R. M. Osgood Jr., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).
    [CrossRef]
  15. M. J. Steel and R. M. Osgood Jr., “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495-503 (2001).
    [CrossRef]
  16. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  17. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  18. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
    [CrossRef]
  19. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338 (2004).
    [CrossRef] [PubMed]
  20. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44, 2652-2658 (2005).
    [CrossRef] [PubMed]
  21. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
    [CrossRef]
  22. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
    [CrossRef]
  23. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469-471 (2007).
    [CrossRef] [PubMed]
  24. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  25. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  26. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
    [CrossRef]
  27. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, “Broadband single-polarization photonic crystal fiber,” Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]
  28. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13, 7621-7630 (2005).
    [CrossRef] [PubMed]
  29. M. Eguchi and Y. Tsuji, “Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode,” Opt. Lett. 32, 2112-2114 (2007).
    [CrossRef] [PubMed]
  30. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured fibers,” Opt. Express 10, 853-864 (2002).
    [PubMed]
  31. M. Eguchi and Y. Tsuji, “Geometrical birefringence in square-lattice holey fibers having a core consisting of a multiple defect,” J. Opt. Soc. Am. B 24, 750-755 (2007).
    [CrossRef]
  32. I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Opt. Express 11, 2799-2806 (2003).
    [CrossRef] [PubMed]
  33. K. L. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799-2807 (2005).
    [CrossRef] [PubMed]
  34. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205-1209 (1965).
    [CrossRef]
  35. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75-83 (1975).
    [CrossRef]
  36. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21, 4208-4213 (1982).
    [CrossRef] [PubMed]
  37. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015-6022 (2005).
    [CrossRef] [PubMed]
  38. N. H. Vu, I.-K. Hwang, and Y.-H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33, 119-121 (2008).
    [CrossRef] [PubMed]
  39. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  40. S. Février, R. Jamier and J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14, 562-569 (2006).
    [CrossRef] [PubMed]
  41. J. Sakai and T. Kimura, “Bending loss of propagation modes in arbitrary-index profile optical fibers,” Appl. Opt. 17, 1499-1506 (1978).
    [CrossRef] [PubMed]
  42. J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc.-J: Optoelectron. 136, 225-228 (1989).
    [CrossRef]
  43. D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957-2961 (1993).
    [CrossRef]

2008 (1)

2007 (4)

2006 (1)

2005 (6)

2004 (4)

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775-1779 (2004).
[CrossRef] [PubMed]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338 (2004).
[CrossRef] [PubMed]

2003 (2)

I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Opt. Express 11, 2799-2806 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

2002 (1)

2001 (6)

2000 (4)

1999 (2)

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

1998 (2)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

1997 (2)

1996 (1)

1993 (1)

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957-2961 (1993).
[CrossRef]

1989 (1)

J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc.-J: Optoelectron. 136, 225-228 (1989).
[CrossRef]

1982 (1)

1978 (1)

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75-83 (1975).
[CrossRef]

1974 (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021-1039 (1974).

1965 (1)

Albertsen, M.

Arriaga, J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Astle, H. W.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021-1039 (1974).

Atkin, D. M.

Belardi, W.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233-1235 (2001).
[CrossRef]

Berghmans, F.

Birks, T. A.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484-485 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775-1779 (2004).
[CrossRef] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Blondy, J.-M.

Bonacinni, D.

Botten, L. C.

Bouwmans, G.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Broeng, J.

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13, 7621-7630 (2005).
[CrossRef] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Brown, T. G.

Bubnov, M. M.

Chaudhuri, P. R.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Chen, D.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Cox, F.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

de Sterke, C. M.

Dianov, E. M.

Dong, X.

Douay, M.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Eguchi, M.

Fellew, M.

Février, S.

Folkenberg, J. R.

Fujita, M.

Furusawa, K.

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

Guryanov, A. N.

Hansen, K. P.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75-83 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75-83 (1975).
[CrossRef]

Henry, G.

Hwang, I.-K.

Iliew, R.

Issa, N. A.

Jacobsen, C.

Jakobsen, C.

Jamier, R.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Jin, L.

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

Kai, G.

Kaiser, P.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021-1039 (1974).

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Khopin, V. F.

Kimura, T.

Klimek, J.

Knight, J. C.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484-485 (1997).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Large, M. C. J.

Lederer, F.

Lee, J. H.

Lee, Y.-H.

Lee, Y.-J.

Li, Y.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Likhachev, M. E.

Limpert, J.

Liu, J.

Liu, Y.

Love, J. D.

J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc.-J: Optoelectron. 136, 225-228 (1989).
[CrossRef]

Lu, C.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Lu, Y.

Makara, M.

Malitson, I. H.

Mangan, B. J.

Marcuse, D.

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957-2961 (1993).
[CrossRef]

D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21, 4208-4213 (1982).
[CrossRef] [PubMed]

Martynkien, T.

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

McPhedran, R. C.

Mogilevtsev, D.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

Monro, T. M.

Mortensen, N. A.

Nasilowski, T.

Nielsen, M. D.

Olszewski, J.

Ortigosa-Blanch, A.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Osgood, R. M.

Paulose, V.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Petersson, A.

Petropoulos, P.

Provino, L.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Ranka, J. K.

Reichenbach, K. L.

Richardson, D. J.

Röser, F.

Russell, P. St. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484-485 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Sakai, J.

Salganskii, M. Y.

Schmidt, O.

Schreiber, T.

Semjonov, S. L.

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Statkiewicz, G.

Steel, M. J.

Stentz, A. J.

Sun, T.

Suzuki, K.

Szpulak, M.

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Thienpont, H.

Tsuji, Y.

Tünnermann, A.

Urbanczyk, W.

van Eijkelenborg, M. A.

Vu, N. H.

Wadsworth, W. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Wang, Z.

White, T. P.

Windeler, R. S.

Wójcik, J.

Xu, C.

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

Yuan, S.

Yue, Y.

Zhang, C.

Zhao, C.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Zhu, Z.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021-1039 (1974).

Electron. Lett. (2)

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63-64 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEE Proc.-J: Optoelectron. (1)

J. D. Love, “Application of a low-loss criterion to optical waveguides and devices,” IEE Proc.-J: Optoelectron. 136, 225-228 (1989).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957-2961 (1993).
[CrossRef]

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75-83 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (8)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured fibers,” Opt. Express 10, 853-864 (2002).
[PubMed]

I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Opt. Express 11, 2799-2806 (2003).
[CrossRef] [PubMed]

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775-1779 (2004).
[CrossRef] [PubMed]

K. L. Reichenbach and C. Xu, “The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers,” Opt. Express 13, 2799-2807 (2005).
[CrossRef] [PubMed]

J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015-6022 (2005).
[CrossRef] [PubMed]

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13, 7621-7630 (2005).
[CrossRef] [PubMed]

S. Février, R. Jamier and J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14, 562-569 (2006).
[CrossRef] [PubMed]

Opt. Lett. (15)

Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469-471 (2007).
[CrossRef] [PubMed]

J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, “Broadband single-polarization photonic crystal fiber,” Opt. Lett. 30, 1446-1448 (2005).
[CrossRef] [PubMed]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338 (2004).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

M. J. Steel and R. M. Osgood Jr., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).
[CrossRef]

M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488-490 (2001).
[CrossRef]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233-1235 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484-485 (1997).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

M. Eguchi and Y. Tsuji, “Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode,” Opt. Lett. 32, 2112-2114 (2007).
[CrossRef] [PubMed]

N. H. Vu, I.-K. Hwang, and Y.-H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33, 119-121 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

(Color online) Elliptical-hole core circular-hole HF. (a) The x EC - CHF . (b) The y EC - CHF .

Fig. 2
Fig. 2

Effective index n eff of FSM of circular-hole lattices.

Fig. 3
Fig. 3

Effective index n eff of FSM of elliptical-hole lattices ( e = 0.5 ) with (a) the x- and (b) y-major axes. Solid curve, the x-polarized mode. Dashed curve, the y-polarized mode.

Fig. 4
Fig. 4

FSM birefringence of elliptical-hole lattices against the ellipticity e. Solid curve, Λ λ = 1.484 . Dashed curve, Λ λ = 2.3 .

Fig. 5
Fig. 5

Frequency property of FSM birefringence of elliptical-hole lattices ( e = 0.5 ) with the x- (solid curves) and y-major (dashed curves) axes.

Fig. 6
Fig. 6

Effective index n eff of FSM of circular- (solid curves) and elliptical-hole (dashed curves) lattices having ξ e = 0.9 and e = 0.5 against the normalized frequency Λ λ . (a) Elliptical-hole lattices with the x-major axis. (b) Elliptical-hole lattices with the y-major axis.

Fig. 7
Fig. 7

Permissible range of circular hole size satisfying only one polarization state against the normalized frequency. (a) Elliptical-hole lattices with the x-major axis. (b) Elliptical-hole lattices with the y-major axis. The dashed-dotted curve indicates the normalized cutoff frequency of EC-CHF.

Fig. 8
Fig. 8

Intensity distributions of the slow mode for an x EC - CHF with ξ = 0.63 at Λ λ = ( a ) 4.6 and (b) 0.8.

Fig. 9
Fig. 9

Intensity distributions of the slow mode for a y EC - CHF with ξ = 0.63 at Λ λ = ( a ) 4.6 and (b) 0.8.

Fig. 10
Fig. 10

Dispersion properties of the fundamental mode (thick curve) of the one-ring EC-CHF, the FSM (thin curve) in the cladding region, and the two polarized FSMs (dashed curves) in the core region. (a) x EC - and (b) y EC - CHFs with ξ = 0.65 . The cutoff frequency is indicated on the horizontal axis by an arrow.

Fig. 11
Fig. 11

Intensity distributions of the slow mode for (a) x EC - and (b) y EC - CHFs with ξ = 0.65 at Λ λ = 0.8 .

Fig. 12
Fig. 12

Chromatic dispersion D T for EC-CHFs of Fig. 10. Solid curve, x EC - CHF . Dashed curve, y EC - CHF . D M denotes the material dispersion of fused silica. The cutoff wavelength is indicated by an arrow.

Fig. 13
Fig. 13

Chromatic dispersion of FSMs of elliptical-hole (dashed curves) and circular-hole (thin curves) lattices. (a) Elliptical-hole lattices with the x-major axis. (b) Elliptical-hole lattices with the y-major axis. The thick curve indicates the dispersion of a one-ring EC-CHF ( ξ e = 0.9 , e = 0.5 , and ξ = 0.65 ) shown in Fig. 12.

Fig. 14
Fig. 14

FSM birefringence of elliptical-hole lattices with a constant hole area against the ellipticity 1 e . Solid curve, elliptical-hole lattices with the x-major axis. Dashed curve, elliptical-hole lattices with the y-major axis.

Fig. 15
Fig. 15

Dispersion property of the guided modes of single-polarization EC-CHFs (three rings: thick dashed curve; four rings: thick solid curve), the FSM in the cladding region (thin solid curve), and the two orthogonally polarized FSMs in the core region (thin dashed curves). (a) Three- and four-ring x EC - CHFs . (b) Three- and four-ring y EC - CHFs .

Fig. 16
Fig. 16

Intensity distributions of the guided mode of (a) two-, (b) three-, and (c) four-ring x EC - CHFs .

Fig. 17
Fig. 17

Intensity distributions of the guided mode of (a) two-, (b) three-, and (c) four-ring y EC - CHFs .

Fig. 18
Fig. 18

Chromatic dispersion for the guided-modes of three-ring (thick dashed curve) and four-ring (thick solid curve) EC-CHFs and FSMs in the core (thin dashed curve) and cladding (thin solid curve) regions. (a) Three- and four-ring x EC - CHF . (b) Three- and four-ring y EC - CHF .

Fig. 19
Fig. 19

Chromatic dispersion of the FSMs of elliptical-hole lattices ( e = 0.5 ) with zero dispersion at 1.55 μ m . FSM x e x for ( Λ [ μ m ] , ξ e ) = ( 1 , 0.299 ) , (2, 0.243), (3, 0.701). FSM y e y for ( Λ [ μ m ] , ξ e ) = ( 1 , 0.299 ) , (2, 0.243), (3, 0.637).

Fig. 20
Fig. 20

Chromatic dispersion of one-ring 1.55 μ m zero-dispersion EC-CHFs with the x- (solid curve) and y-major (dashed curve) axes.

Fig. 21
Fig. 21

Intensity distributions of the guided mode for one-ring (a) x EC - and y EC - CHFs with zero dispersion at 1.55 μ m .

Fig. 22
Fig. 22

Bending loss of 1.55 μ m zero-dispersion EC-CHFs with small holes shown in Fig. 18.

Tables (1)

Tables Icon

Table 1 Comparison of Effective Indices of EC-CHFs and Approximate Weakly Guiding Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D T = λ c d 2 n eff d λ 2 ,

Metrics