Abstract

We present what we believe is a novel theoretical scheme for phase interrogation of a planar refractive index sensor based on a surface plasmon polariton (SPP) excited with a Bragg grating. The device is a Mach–Zehnder interferometer (MZI), which offers a simple integrated optical solution to monitor relative phase variations in waveguides. The principle of operation for this device is based on the significant phase change in the field of a waveguide mode transmitted through a grating. This phase change occurs during the SPP excitation and is caused by the change in the refractive index of the sensed layer in contact with the metal layer supporting the SPP, operating at commercialized telecommunications wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedborg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982/83).
  2. H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235-239 (1988).
    [CrossRef]
  3. D. Kim, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218-3223 (2005).
    [CrossRef] [PubMed]
  4. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. 42, 6905-6909 (2003).
    [CrossRef] [PubMed]
  5. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24, 2696-2701 (2007).
    [CrossRef]
  6. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1968).
  7. E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results,” Opt. Commun. 6, 185-187 (1972).
    [CrossRef]
  8. I. R. Hooper and J. B. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in a conical mount,” J. Opt. Soc. Am. A 20, 836-843 (2003).
    [CrossRef]
  9. A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
    [CrossRef]
  10. J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
    [CrossRef]
  11. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Opt. Commun. 275, 76-82 (2007).
    [CrossRef]
  12. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
    [CrossRef]
  13. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
    [CrossRef]

2007 (2)

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Opt. Commun. 275, 76-82 (2007).
[CrossRef]

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24, 2696-2701 (2007).
[CrossRef]

2005 (1)

2004 (1)

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

2003 (2)

1999 (2)

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
[CrossRef]

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

1990 (1)

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
[CrossRef]

1988 (1)

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235-239 (1988).
[CrossRef]

1972 (1)

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results,” Opt. Commun. 6, 185-187 (1972).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1968).

Abdelmalek, F.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Bartlett, P. N.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Ctyroky, J.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Ecke, W.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Harris, R. D.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Hooper, I. R.

Kabashin, A. V.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
[CrossRef]

Kano, H.

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235-239 (1988).
[CrossRef]

Kashyap, R.

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Opt. Commun. 275, 76-82 (2007).
[CrossRef]

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24, 2696-2701 (2007).
[CrossRef]

Kim, D.

Knoll, W.

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235-239 (1988).
[CrossRef]

Kochergin, V. E.

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results,” Opt. Commun. 6, 185-187 (1972).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1968).

Liedborg, B.

C. Nylander, B. Liedborg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982/83).

Lind, T.

C. Nylander, B. Liedborg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982/83).

Luong, J. H. T.

Meunier, M.

Nemova, G.

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Opt. Commun. 275, 76-82 (2007).
[CrossRef]

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24, 2696-2701 (2007).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
[CrossRef]

Nylander, C.

C. Nylander, B. Liedborg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982/83).

Patskovsky, S.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1968).

Sambles, J. B.

Sheridan, A. K.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Usbeck, K.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Wilkinson, J. S.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun. 153, 235-239 (1988).
[CrossRef]

G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Opt. Commun. 275, 76-82 (2007).
[CrossRef]

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results,” Opt. Commun. 6, 185-187 (1972).
[CrossRef]

Opt. Quantum Electron. (1)

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modeling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927-941 (1999).
[CrossRef]

Sens. Actuators (1)

C. Nylander, B. Liedborg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79-88 (1982/83).

Sens. Actuators B (2)

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast,” Sens. Actuators B 54, 51-56 (1999).
[CrossRef]

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Z. Naturforsch. Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1968).

Other (1)

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure under consideration. GM is the guided mode, A is an attenuator. Insertion illustrates the MZI branch with the Bragg grating. The other MZI branch is identical to the one shown, but without the grating. The SPP travels in the opposite direction if a LPG is used.

Fig. 2
Fig. 2

Dependence between the refractive index of the sensed medium ( n sen ) and the phase of the guided mode transmitted through the grating ( ϕ ) for three structures with: Δ = 10 nm , L = 2.5 cm , Λ = 493 μ m ; Δ = 12 nm , L = 2.2 cm , Λ = 505 μ m ; Δ = 13 nm , L = 2.1 cm , Λ = 509 μ m .

Fig. 3
Fig. 3

Dependence between the metal layer thickness and the sensitivity of the sensor.

Fig. 4
Fig. 4

Grating transmission spectra for different n sen , L = 2.5 cm , Δ = 10 nm , Λ = 493 nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n w , b = n w , b σ [ 1 + cos ( 2 π Λ z ) ] ,
δ gp + κ co - co = 0 ,
κ co - co = 1 2 k 0 Z 0 σ 0 ( a + b ) H y g ( x ) 2 d x
E z o u t = E z i n t e i ϕ ,
I ( ϕ ) = 1 4 ( t 1 2 + t 2 2 + 2 t 1 t 2 cos ( ϕ ) ) ,

Metrics